Обобщающие параметры потоков платежей
В подавляющем числе практических случаев финансовый анализ предполагает расчет одной из двух обобщающих характеристик потока платежей: наращенной суммы и современной стоимости. Наращенная сумма (amount of cash flows) — сумма всех членов потока платежей с начисленными на них к концу срока процентами. Под современной (или текущей) стоимостью потока платежей (present value of cash flows) понимают сумму всех его членов, дисконтированных на начало срока потока платежей или иной упреждающий момент времени. Вместо термина "современная стоимость" в зависимости от контекста также употребляют термины "капитализированная стоимость" или "приведенная величина". Конкретный смысл этих характеристик определяется содержанием членов потока или их происхождением. Наращенная сумма может представлять собой общую сумму накопленной задолженности к концу срока, итоговый объем инвестиций, накопленный денежный резерв и т. д. В свою очередь, современная стоимость характеризует приведенные к началу осуществления проекта инвестиционные затраты, суммарный капитализированный доход или чистую приведенную прибыль от реализации проекта и т. п. Из двух указанных обобщающих характеристик наибольшую роль в анализе производственных инвестиций играет современная стоимость потока платежей. Это объясняется прежде всего тем, что современная стоимость представляет собой "свертку" — обобщение в виде одного числа любой последовательности платежей и позволяет сравнивать потоки с различными сроками. Современная стоимость потока платежей эквивалентна в финансовом смысле всем платежам, которые охватывает поток. Общий метод расчета наращенной суммы и современной стоимости потока платежей. Рассмотрим общую постановку задачи. Допустим, имеется ряд платежей Rt, выплачиваемых спустя время nt после некоторого начального момента времени, общий срок выплат составляет п лет. Необходимо определить наращенную на конец срока сумму. Если проценты начисляются раз в году по сложной ставке i, то, обозначив искомую величину через S, получим
Современную стоимость такого потока также определим прямым счетом как сумму платежей, дисконтированных на начало срока. Обозначив эту величину А, получим
где vnt — дисконтный множитель по ставке i.
Нетрудно обнаружить, что между величинами А и S существует функциональная зависимость. В самом деле, дисконтируя сумму S, получим
Наращивая сумму А по той же ставке, находим
|