Студопедия — Термопауза
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Термопауза






Основная статья: Термопауза

Область атмосферы прилегающая сверху к термосфере. В этой области поглощение солнечного излучения незначительно и температура фактически не меняется с высотой.

Экзосфера (сфера рассеяния)

Основная статья: Экзосфера

Состав сухого воздуха[1][2]
Газ Содержание по объёму, % Содержание по массе, %
Азот 78,084 75,50
Кислород 20,946 23,10
Аргон 0,932 1,286
Вода 0,5-4
Углекислый газ 0,0387 0,059
Неон 1,818·10−3 1,3·10−3
Гелий 4,6·10−4 7,2·10−5
Метан 1,7·10−4
Криптон 1,14·10−4 2,9·10−4
Водород 5·10−5 7,6·10−5
Ксенон 8,7·10−6
Закись азота 5·10−5 7,7·10

 

17. Солнечная радиация. Интенсивность солнечной радиации. Солнечная постоянная.

8.4.Интенсивность солнечной радиации. Солнечная постоянная
Солнечная радиация – это важнейший источник тепла для географической оболочки. Вторым источником тепла для географической оболочки является тепло, идущее от внутренних сфер и слоев нашей планеты.
В связи с тем, что в географической оболочке один вид энергии (лучистая энергия) эквивалентно переходит в другой вид (тепловая энергия), то лучистую энергию солнечной радиации можно выражать в единицах тепловой энергии – джоулях (Дж).
Интенсивность солнечной радиации должна быть прежде всего определена за пределами атмосферы, так как при прохождении через воздушную сферу она преобразуется и ослабевает. Интенсивность солнечной радиации выражается солнечной постоянной.
Солнечная постоянная – это поток солнечной энергии за 1 минуту на площадь сечением в 1 см2, перпендикулярную солнечным лучам и расположенную вне атмосферы. Солнечная постоянная может быть также определена как количество тепла, которое получает в 1 минуту на верхней границе атмосферы 1 см2 черной поверхности, перпендикулярной солнечным лучам.
Солнечная постоянная равна 1, 98 кал / (см2 х мин), или 1, 352 кВт/ м2 х мин.
Поскольку верхняя атмосфера поглощает значительную часть радиации, то важно знать величину ее на верхней границе географической оболочки, то есть в нижней стратосфере. Солнечная радиация на верхней границе географической оболочки выражается условной солнечной постоянной. Величина условной солнечной постоянной равна 1, 90 – 1, 92 кал / (см2 х мин), или 1,32 – 1, 34 кВт / (м2 х мин).
Солнечная постоянная, вопреки своему названию, не остается постоянной. Солнечная постоянная изменяется в связи с изменением расстояния от Солнца до Земли в процессе движения Земли по орбите. Как бы ни были малы эти колебания, они непременно сказываются на погоде и климате.
В среднем каждый квадратный километр тропосферы получает в год 10,8 х 1015 Дж. (2,6 х 1015 кал). Такое количество тепла может быть получено при сжигании 400 000 т каменного угля. Вся Земля за год получает такое количество тепла, которое определяется величиной 5, 74 х 10 24 Дж. (1, 37 х 10 24 кал).

18. Распределение солнечной радиации «на верхней границе атмосферы» или при абсолютно прозрачной атмосфере

8.5.Распределение солнечной радиации «на верхней границе атмосферы» или при абсолютно прозрачной атмосфере
Знание распределения солнечной радиации до ее вступления в атмосферу, или так называемого солярного (солнечного) климата, важно для определения роли и доли участия самой воздушной оболочки Земли (атмосферы) в распределении тепла по земной поверхности и в формировании ее теплового режима.
Количество солнечного тепла и света, поступающее на единицу площади, определяется углом падения углом падения лучей, зависящим от высоты Солнца над горизонтом, и продолжительностью дня.
Распределение радиации у верхней границы географической оболочки, обусловленное только астрономическими факторами, более равномерно, чем реальное распределение у земной поверхности.
При условии отсутствия атмосферы годовая сумма радиации в экваториальных широтах составляла бы 13 480 МДж/см2 (322 ккал/см2), а на полюсах 5 560 МДж/м2 (133 ккал/см2). В полярные широты Солнце посылает тепла немного меньше половины (около 42 %) того количества, которое поступает на экватор.
Казалось бы, солнечное облучение Земли симметрично относительно плоскости экватора. Но это происходит только два раза в год, в дни равноденствия. Наклон оси вращения и годовое движение Земли обусловливают ассиметричное ее облучение Солнцем. В январскую часть года больше тепла получает южное полушарие, в июльскую – северное. Именно в этом заключается главная причина сезонной ритмики в географической оболочке.
Разница между экватором и полюсом летнего полушария невелика: на экватор поступает 6 740 МДж/м2 (161 ккал/см2), а на полюс около 5 560 МДж/м2 (133 ккал/см2 в полугодие). Зато полярные страны зимнего полушария в это же время вовсе лишены солнечного тепла и света.
В день солнцестояния полюс получает тепла даже больше, чем экватор (46,0 МДж/м2 (1,1 ккал/см2) и 33.9 МДж/м2 (0,81 ккал/см2).
Таким образом, солярный климат на полюсах в годовом выводе в 2,4 раза холоднее, чем на экваторе. Однако надо иметь ввиду, что зимой полюсы вообще не нагреваются Солнцем.
Реальный климат всех широт во многом обязан земным факторам. Главнейший из них – ослабление радиации в атмосфере, и разное усвоение е земной поверхностью в различных географических условиях.

19. Изменение солнечной радиации при прохождении через атмосферу.

8.6.Изменение солнечной радиации при прохождении через атмосферу
Прямые солнечные лучи, пронизывающие атмосферу при безоблачном небе, называются прямой солнечной радиацией. Максимальная ее величина при высокой прозрачности атмосферы на перпендикулярной лучам поверхности в тропическом поясе равна около 1,05 – 1, 19 кВт/м2 (1,5 – 1,7 кал/см2 х мин. В средних широтах напряжение полуденной радиации обычно составляет около 0,70 – 0,98 кВт /м2 х мин (1,0 – 1,4 кал/см2 х мин). В горах оно увеличивается.
Часть солнечных лучей от соприкосновения с молекулами газов и аэрозолями рассеивается и переходит в рассеянную радиацию. На земную поверхность рассеянная радиация поступает уже не от солнечного диска, а от всего небосвода и создает повсеместную дневную освещенность. От нее в солнечные дни светло и там, куда не проникают прямые лучи, например под пологом леса. Наряду с прямой радиацией рассеянная радиация также служит источником тепла.
Абсолютная величина рассеянной радиации тем больше, чем интенсивнее прямая. Относительное значение рассеянной радиации возрастает с уменьшением роли прямой: в средних широтах летом она составляет 41%, а зимой 73 % общего прихода радиации. Ее доля зависит от высоты Солнца: в высоких широтах она равна 30 %, в полярных 70 % от всей радиации.
В целом же (с участием суточного хода высоты Солнца и облачности неба) на рассеянную радиацию приходится около 25 % всего потока солнечных лучей.
На земную поверхность, таким образом, поступает прямая и рассеянная радиация. В совокупности прямая и рассеянная радиация образуют суммарную радиацию, которая определяет тепловой режим тропосферы.
Поглощая и рассеивая радиацию, атмосфера значительно ее ослабляет. Величина ослабления зависит от коэффициента прозрачности, показывающего, какая доля радиации доходит до земной поверхности. Если бы тропосфера состояла бы только из газов, то коэффициент прозрачности был бы равен 0,9, то есть она бы пропускала бы 90 % идущей к Земле радиации. Но в воздухе всегда присутствуют аэрозоли, снижающие коэффициент прозрачности до 0,7 – 0,8. Прозрачность атмосферы изменяется вместе с изменением погоды.
Так как плотность воздуха падает с высотой, то слой газа, пронизываемого лучами, нельзя выражать в км толщины атмосферы. В качестве единицы измерения принята оптическая масса, равная мощности слоя воздуха при вертикальном падении лучей.
Ослабление радиации в тропосфере легко наблюдать в течение суток. Когда Солнце находится около горизонта, то его лучи пронизывают несколько оптических масс. Их интенсивность при этом так ослабевает, что на Солнце можно смотреть незащищенным глазом. С поднятием Солнца уменьшается число оптических масс, которые проходят его лучи, и интенсивность лучей возрастает.
Степень ослабления солнечной радиации в атмосфере выражается формулой Ламберта:

Ii = I0 pm, где
Ii – радиация, достигшая земной поверхности,
I0 – солнечная постоянная,
p – коэффициент прозрачности,

20. Солнечная радиация из земной поверхности.

8.7. Солнечная радиация у земной поверхности
Количество лучистой энергии, приходящее на единицу земной поверхности, зависит прежде всего от угла падения солнечных лучей. На одинаковые площади на экваторе, в средних и высоких широтах приходится различное количество радиации.
Солнечная инсоляция (освещение) сильно ослабляется облачностью. Большая облачность экваториальных и умеренных широт и малая облачность тропических широт вносят значительные коррективы в зональное распределение лучистой энергии Солнца.
Распределение солнечного тепла по земной поверхности показывается на карте суммарной солнечной радиации. Как показывают карты распределения суммарной солнечной радиации, наибольшее количество солнечного тепла – от 7 530 до 9 200 МДж/м2 (180-220 ккал/см2) получают тропические широты. Экваториальные широты из-за большой облачности получают тепла несколько меньше, 4 185 – 5 860 МДж/м2 (100-140 ккал/см2).
От тропических широт к умеренным радиация уменьшается. На островах Арктики она составляет не более 2 510 МДж/м2 (60 ккал/см2) в год. Распределение радиации по земной поверхности имеет зонально-региональный характер. Каждая зона распадается на отдельные районы (регионы), несколько отличающиеся один от другого.

21. Сезонные колебания суммарный радиации.

8.8. Сезонные колебания суммарной радиации
В экваториальных и тропических широтах высота Солнца и угол падения солнечных лучей по месяцам изменяются незначительно. Суммарная радиация во все месяцы характеризуется большими величинами, сезонная смена тепловых условий или отсутствует, или весьма незначительна. В экваториальном поясе слабо намечаются два максимума, соответствующие зенитальному положению Солнца.
В умеренном поясе в годовом ходе радиации резко выражен летний максимум, в котором месячная величина суммарной радиации не меньше тропической. Число теплых месяцев уменьшается с широтой.
В полярных поясах радиационный режим резко изменяется. Здесь в зависимости от широта от нескольких суток до нескольких месяцев прекращается не только нагревание, но и освещение. Летом же освещение здесь непрерывно, и это повышает сумму месячной радиации.

22. Усвоение радиации земной поверхностью. Альбедо.

8.9. Усвоение радиации земной поверхностью. Альбедо
Суммарная радиация, достигшая земной поверхности, частично поглощается почвой и водоемами и переходит в тепло. На океанах и морях суммарная радиация расходуется на испарение, частично отражается в атмосферу (отраженная радиация). Cоотношение усвоенной и отраженной лучистой энергии зависит от характера суши. От угла падения лучей на земную поверхностью В связи с тем, что поглощенную энергию измерять практически невозможно, то определяют величину отраженной радиации.

Отражательная способность наземных и водных поверхностей называется их альбедо. Альбедо исчисляется в процентах отраженной радиации от упавшей на данную поверхность. Альбедо наряду с углом падения лучей и количеством оптических масс атмосферы, ими проходимых, является одним из важнейших планетарных факторов образования климатов.
На суше альбедо определяется цветом природных поверхностей. Всю радиацию способно усвоить абсолютно черное тело. Зеркальная поверхность отражает 100 % лучей и не способна нагреваться. Из реальных поверхностей наибольшим альбедо обладает чистый снег.
Климатообразующее значение отражательной способности различных поверхностей исключительно велико. В ледовых зонах высоких широт солнечная радиация, уже ослабленная при прохождении большого числа оптических масс атмосферы и упавшая на поверхность под острым углом, отражается вечными снегами.
Альбедо водной поверхности для прямой радиации зависит от того, под каким углом на нее падают солнечные лучи. Вертикальные лучи проникают в воду глубоко, и она усваивает их тепло. Наклонные лучи от воды отражаются, как от зеркала, и ее не нагревают. Альбедо водной поверхности при высоте Солнца 900 равно 2 %, при высоте Солнца 200 – 78%. Для рассеянной радиации альбедо несколько меньше. В связи с тем, что 2/3 площади земного шара занято океаном, то усвоение солнечной энергии водной поверхностью выступает как важнейший климатообразующий фактор.
Океаны в субтропических широтах усваивают лишь малую долю того тепла Солнца, которое до них доходит. Тропические моря, наоборот, поглощают почти всю солнечную энергию. Альбедо водной поверхности. Как и снежный покров полярных стран, углубляет зональную дифференциацию климатов.
В умеренном поясе отражательная способность земной поверхности усиливает разницу между сезонами года. В сентябре-марте Солнце стоит на одинаковой высоте над горизонтом, но март холоднее сентября, так как солнечные лучи отражаются от снежного покрова. Появление осенью сначала желтых листьев, а затем инея и временного снега увеличивает альбедо и снижает температуру воздуха. Устойчивый снежный покров, вызванный низкой температурой, ускоряет выхолаживание и дальнейшее снижение зимних температур.

23. Теплоизлучение земной поверхности и атмосферы. Встречное излучение. Эффективное излучение. Оранжерейный (тепличный) эффект.

Теплоизлучение земной поверхности и атмосферы
Все участки географической оболочки – поверхность морей и океанов, почва, лесные массивы, снежники и ледники, нагретые солнечной радиацией выше абсолютного нуля, обладают собственным излучением. Теплоизлучение земной поверхности представляет собой длинноволновую радиацию. При температуре выше 150 С (средняя температура воздуха в северном полушарии на высоте 2 м от земной поверхности составляет 15,20 С) теплоизлучение равно 0,42 кВт/м2 х мин (0,6 кал/см2 х мин). Холодные тела излучают тепла меньше, а теплые тела излучают больше.
Земное излучение нагревает воздух. Нагретая атмосфера сама отдает тепло, одна часть которого идет вверх и теряется в межпланетном пространстве, вторая часть – идет вниз к Земле, навстречу земному излучению и называется встречным излучением. При средней величине собственного излучения земной поверхности 0,42 кВт/м2 х мин (0,6 кал/см2 х мин) встречное излучение в среднем равно 0,2 кал/ см2 х мин.
Разница между собственным излучением тепла и встречным излучением атмосферы называется эффективным излучением. Его значение и выражает действительный поток тепла от Земли или воды к атмосфере. В отдельных случаях может наблюдаться поток тепла и от атмосферы к Земле; например, при поступлении морского теплого воздуха на холодную поверхность зимой. Встречное излучение показывает роль атмосферы в тепловом режиме географической оболочки.
Молекулы газов воздуха практически свободно пропускают коротковолновые солнечные лучи. На земной поверхности лучистая энергия превращается в длинноволновую тепловую. Переменная часть атмосферы – водяной пар, углекислый газ, капельки воды и другие взвеси – поглощают длинноволновые тепловые лучи, усиливая встречное излучение. В ясные ночи встречное излучение составляет 70 % от прямого, а в пасмурные достигает 100 %. Свойство атмосферы пропускать солнечные лучи к Земле и задерживать тепловое излучение называется оранжерейным, или тепловым эффектом.
Величина эффективного излучения зависит от следующих факторов:

1. Температура почвы или воды. Чем температура почвы или воды выше, тем больше тепла они теряют излучением. В жаркий летний день и земля, и вода много излучают тепла в воздух и температура его повышается. Теплый воздух дает больший и встречный поток. Возрастает и общий уровень эффективного излучения. Ночью, например, когда нагревание почвы и воды прекращается, уменьшается и их излучение. Перед рассветом оно становится совсем незначительным. Соответственно и понижается и температура воздуха.

2. Влажность воздуха. Водяной пар улавливает длинноволновое излучение и удерживает тепло. Влажная атмосфера посылает к Земле значительный встречный поток, эффективное излучение уменьшается. По этой причине во влажных климатах и при влажной погоде ночи не бывают так холодны, как в сухую погоду, и в странах с сухим климатом.

3. Туманы и облака. Капли воды туманов и облаков действуют, как и водяной пар, но в еще большей степени. Ночи при туманной и облачной погоде бывают обычно теплыми.

4. Близость или удаленность крупных водоемов. Водная масса, будучи теплоемкой, дольше, чем суша, удерживает тепло. Увеличением влажности, образованием облаков и туманов водоемы снижают эффективное излучение. По этой причине наибольшая потеря тепла зимой и ночью и, следовательно, резкие колебания ночной и дневной температур свойственны сухим внутриматериковым странам – Центральной и Средней Азии, Восточной Сибири и Антарктиде.

5. Абсолютная высота местности. В горах, например, с уменьшением плотности воздуха уменьшается встречное и увеличивается эффективное излучение.

6. Растительность. Мощный растительный покров, особенно леса, снижают эффективное излучение. В пустынях встречное излучение резко увеличивается.

7. Характер почво-грунтов. Мощные и рыхлые почвы дольше удерживают и больше излучают тепло; каменистые почвы и особенно пески пустынь скорее его теряют и быстро остывают.

24. Радиационный бюджет земной поверхности.

.Радиационный бюджет земной поверхности
Сложный и противоречивый процесс прихода и расхода солнечного радиационного тепла поверхностью земного шара выражается радиационным бюджетом (балансом) – результатом двух противоположных по направленности процессов: прихода и расхода тепла.
В приходную часть бюджета входят прямая радиация Q, рассеянная радиация В и встречное излучение А. Расход (Е) состоит из отраженной радиации С и излучения земной поверхности И:
R = Q + D + E - C – И.
Если включить эффективное излучение I, то формула примет следующий вид:
R = Q + D – I – C.
Есть и другие формулы для выражения радиационного баланса:
R = Q (1-a) – I, где
Q – суммарная радиация, а – альбедо.
Радиационный баланс может быть положительным, когда приход тепла больше расхода, нулевым, когда они уравновешиваются, и отрицательным, когда потеря тепла (расход) больше прихода.
Суточный ход радиационного баланса. С восходом Солнца начинается приход радиационного тепла и земная поверхность постепенно нагревается и повышается расход тепла. Максимум радиации бывает в полдень, а максимальный расход на 1-2 часа позднее, поскольку до этого времени почва еще не нагрелась. После 13-14 часов приход и расход тепла снижаются вслед за движением Солнца к закату. Ночью прихода тепла нет, но расход его продолжается: нагретая за день земная поверхность отдает тепло сначала в большом количестве, а затем все в меньшем и меньшем количестве.
Описанному радиационному режиму соответствует и ход температуры. Самая низкая температура наблюдается перед восходом Солнца, а самая высокая через 1-2 часа после полудня.
Годовой ход радиационного режима и температуры воздуха в принципе соответствует суточному ходу радиационного баланса и температуры. Самая незначительная радиация поступает в декабре, а самая низкая температура наблюдается в январе (годовое утро); максимум радиации приходится на июль, а максимум температуры – на июль (годовой полдень).

25. Нагревание и охлаждение атмосферы в процессе взаимодействия системы «океан-атмосфера-материк». Скрытая теплота парообразования.

Нагревание и охлаждение атмосферы в процессе взаимодействия системы «океан-атмосфера-материки»
Поглощение солнечных лучей воздухом дает не более 0,10С тепла нижнему километровому слою тропосферы. Непосредственно от Солнца атмосфера получает не более 1/3 тепла, а 2/3 она усваивает от земной поверхности и, прежде всего, от гидросферы, которая передает ей тепло через водяной пар, испарившийся с поверхности водной оболочки.
Солнечный лучи, прошедшие через газовую оболочку планеты, в большинстве мест земной поверхности встречают воду: на океанах, в водоемах и болотах суши, во влажной почве и в листве растений. Тепловая энергия солнечной радиации расходуется прежде всего на испарение. Количество тепла, затрачиваемое на единицу испаряющейся воды, называется скрытой теплотой парообразования. При конденсации пара теплота парообразования поступает в воздух и нагревает его.
Усвоение солнечного тепла водоемами отличается от нагревания суши. Теплоемкость воды примерно в 2 раза больше, чем почвы. При одинаковом количестве тепла вода нагревается вдвое слабее, чем почвы. При охлаждении соотношение обратное. Если на теплую океанскую поверхность проникает холодная воздушная масса, то тепло проникает в слой до 5 км. Прогревание тропосферы обязано скрытой теплоте парообразования.
Турбулентное перемешивание воздуха (беспорядочное, неравномерное, хаотическое) создает конвекционные токи, интенсивность и направление которых зависят от характера местности и общепланетарной циркуляции воздушных масс.
Понятие об адиабатическом процессе. Важная роль в тепловом режиме воздуха принадлежит адиабатическому процессу.
Понятие об адиабатическом процессе. Важнейшая роль в тепловом режиме атмосферы принадлежит адиабатическому процессу. Адиабатическое нагревание и охлаждение воздуха происходит в одной массе, без обмена теплом с другими средами.
При опускании воздуха из верхних или средних слоев тропосферы или по склонам гор он из разряженных слоев поступает в более плотные, молекулы газа сближаются, их соударения усиливаются и кинетическая энергия движения молекул воздуха переходит в тепловую. Воздух нагревается, не получая тепло ни от других воздушных масс, ни от земной поверхности. Адиабатическое нагревание происходит, например, в тропическом поясе, над пустынями и над океанами в этих же широтах. Адиабатическое нагревание воздуха сопровождается его иссушением (что является главной причиной образования пустынь в тропическом поясе).
В восходящих токах воздух адиабатически охлаждается. Из плотной нижней тропосферы он поднимается в разряженную среднюю и верхнюю. При этом плотность его уменьшается, молекулы одна от другой удаляются, сталкиваются реже, тепловая энергия, полученная воздухом от нагретой поверхности, переходит в кинетическую, тратится на механическую работу на расширение газа. Этим объясняется охлаждение воздуха при поднятии.
Сухой воздух адиабатически охлаждается на 10С на 100 м подъема, это – адиабатический процесс. Однако природный воздух содержит водяной пар, при конденсации которого выделяется тепло. Поэтому фактически температура падает на 0,60С на 100 м (или на 60С на 1 км высоты). Это влажно-адиабатический процесс.
При опускании и сухой и влажный воздух нагреваются одинаково, поскольку при этом конденсации влаги не происходит и скрытая теплота парообразования не выделяется.
Наиболее отчетливо типичные черты теплового режима суши проявляются в пустынях: большая доля солнечной радиации отражается от светлой их поверхности, тепло не расходуется на испарение, и идет на нагревание сухих горных пород. От них днем воздух нагревается до высоких температур. В сухом воздухе тепло не задерживается и беспрепятственно излучается в верхнюю атмосферу и межпланетное пространство. Пустыни для атмосферы в планетарном масштабе также служат окнами охлаждения.

26. Инверсия температуры. Приземные инверсии. Инверсии в свободной атмосфере.

Инверсия температуры
В самом общем смысле инверсия – это нарушение привычного хода вещей или порядка. Инверсия температуры – это повышение температуры воздуха с высотой в некотором слое атмосферы вместо обычного понижения.
Известно, что плавное убывание температур с высотой следует считать только общим свойством тропосферы. Очень часто наблюдается такая стратификация воздуха, при которой в направлении вверх температура или не понижается, или даже повышается. Возрастание температуры с высотой над земной поверхностью называется его инверсией.
По мощности слоя воздуха, в котором наблюдается повышение температуры, различают а) инверсии приземные, захватывающие несколько метров, и б) инверсии свободной атмосферы, простирающиеся до трех километров.
Приращение температуры (или величина инверсии) может достигать 100 С и более. При этом атмосфера оказывается как бы расслоенной: одна масса воздуха от другой массы отделяется слоем инверсии.
По происхождению приземные инверсии разделяются на радиационные, адвективные, орографические и снежные.
Радиационные инверсии возникают летом при тихой и безоблачной погоде. После захода Солнца поверхность, а от нее и нижние слои воздуха охлаждаются, а лежащие выше еще сохраняют дневной запас тепла. Мощность таких инверсий колеблется от 10 до 300 м в зависимости от погоды. Радиационные инверсии бывают над ледяными поверхностями в любое время года при потере ими тепла лучеиспусканием.
Орографические инверсии формируются в пересеченной местности при безветренной погоде, когда холодный воздух стекает вниз, а на холмах и склонах гор удерживается более теплый воздух.
Адвективные инверсии бывают при движении теплого воздуха в холодную местность. Причем нижние слои воздуха охлаждаются от соприкосновения с холодной поверхностью, а верхние на время остаются теплыми.
Снежные (весенние) инверсии наблюдаются ранней весной над снежными поверхностями. Они вызываются затратой воздухом большого количества тепла на таяние снега.
В свободной атмосфере наиболее распространены антициклональные инверсии сжатия и циклонические фронтальные инверсии.
Антициклональные инверсии сжатия образуются в антициклонах зимой и наблюдаются на высоте 1-2 км. Температура опускающегося воздуха в средней тропосфере повышается, но близ земной поверхности, где начинается горизонтальное растекание воздуха, она повышается. Это явление наблюдается на огромных территориях Арктики, Антарктики, Восточной Сибири и т.д.
Циклонические фронтальные инверсии образуются в циклонах вследствие натекания теплого воздуха на холодный.

27. Показатели теплового режима воздуха.

.Показатели теплового режима воздуха
Основными показателями температуры воздуха являются следующие:
1.Средняя температура суток.
2.Среднесуточная температура по месяцам.
3.Средняя температура каждого месяца.
4.Средняя многолетняя температура месяца. Все средние многолетние данные выводятся за длительный период (не менее 35 лет). Чаще всего пользуются данными января и июля. Самые высокие многолетние месячные температуры наблюдаются в Сахаре (до + 36,50 С) и в Долине Смерти (до +390 С). Самые низкие температуры фиксируются на станции Восток в Антарктиде (до – 700 С).
5.Средняя температура каждого года.
6.Средняя многолетняя температура года. Самая высокая среднегодовая температура зафиксирована на метеостанции Даллол в Эфиопии и составила +34,4 0С. На юге Сахары многие пункты имеют среднегодовую температуру +29-300 С. Самая низкая среднегодовая температура зарегистрирована на плато Стейшн и составила – 56,60 С.
7.Абсолютные минимумы и максимумы температуры за любой срок наблюдений – сутки, месяц, год, ряд лет. Абсолютный минимум для всей земной поверхности был отмечен на станции Восток в Антарктиде в августе 1960 г и составил – 88,30 С, для северного полушария – в Оймяконе в феврале 1933 года (-67,70С).
Самая высокая для всей Земли температура наблюдалась в сентябре 1922 года в Эль-Азии в Ливии (+57,8 0С). Второй рекорд жары +56,7 0С был зарегистрирован в Долине Смерти. На третьем месте по данному показателю находится пустыня Тар (+53 0С).
В море самая высокая температура воды +35,60С отмечена в Персидском заливе. Озерная вода больше всего нагревается в Каспийском море (до +37,20С).

28. Распределение тепла по земной поверхности.

Распределение тепла по земной поверхности
Если бы тепловой режим географической оболочки определялся только распределением солнечной радиации без переноса ее атмосферой и гидросферой, то на экваторе температура воздуха была бы 390 С, а на полюсе -440С. Уже на широте 500 с.ш. и ю.ш. начиналась бы зона вечного мороза. Однако действительная температура на экваторе составляет около 260С, а на северном полюсе -200С.
До широт 30 0 солярные температуры выше фактических, т.е. в этой части земного шара образуется избыток солнечно тепла. В средних, а тем более в полярных широтах фактические температуры выше солярных, т.е. эти пояса Земли получают дополнительное к солнечному тепло. Оно поступает из низких широт с океаническими (водными) и тропосферными воздушными массами в процессе их планетарной циркуляции.
Таким образом, распределение солнечного тепла, как и его усвоение, происходит не в одной системе – атмосфере, а в системе более высокого структурного уровня – атмосфере и гидросфере.
Анализ распределения тепла в гидросфере и атмосфере позволяет сделать следующие обобщающие выводы:
1.Южное полушарие холоднее северного, так как туда меньше поступает адвективного тепла из жаркого пояса.
2.Солнечное тепло расходуется главным образом над океанами на испарение воды. Вместе с паром оно перераспределяется как между зонами, так и внутри каждой зоны, между материками и океанами.
3.Из тропических широт тепло с пассатной циркуляцией и тропическими течениями поступает в экваториальные. Тропики теряют до 60 ккал/см2 в год, а на экваторе приход тепла от конденсации составляет 100 и более кал/см2 в год.
4.Северный умеренный пояс от теплых океанских течений, идущих из экваториальных широт (Гольфстрим, Куровиво), получает на океанах до 20 и более ккал/см2 в год.
5.Западным переносом с океанов тепло переносится на материки, где умеренный климат формируется не до широты 500, а намного севернее полярного круга.
6.В южном полушарии тропическое тепло получают только Аргентина и Чили; в Южном океане циркулируют холодные воды Антарктического течения.
В январе огромная область положительных температурных аномалий находится в Северной Атлантике. Она простирается от тропика до 85 0 с.ш. и от Гренландии до линии Ямал-Черное море. Максимального превышения фактические температуры над среднеширотной достигают в Норвежском море (до 260 С). Британские острова и Норвегия теплее на 160С, Франция и Балтийское море – на 120С.
В Восточной Сибири в январе образуется столь же большая и ярко выраженная область отрицательных температурных аномалий с центром в Северо-Восточной Сибири. Здесь аномалия достигает -24 0С.
В северной части Тихого океана также находится область положительных аномалий (до 130С), а в Канаде – отрицательных (до -150С).
Распределение тепла на земной поверхности на географических картах при помощи изотерм. Существуют карты изотерм года и каждого месяца. Эти карты достаточно объективно иллюстрируют тепловой режим той или иной местности.
Тепло на земной поверхности распределено зонально-регионально:
1.Средняя многолетняя самая высокая температура (270 С) наблюдается не на экваторе, а на 100 с.ш. Эта наиболее теплая параллель называется термическим экватором.
2. В июле термический экватор смещается на северный тропик. Средняя температура на этой параллели равна 28,2 0С, а в самых жарких районах (Сахара, Калифорния, Тар) она достигает 360С.
3.В январе термический экватор сдвигается в южное полушарие, но не так значительно, как в июле в северное. Самой теплой параллелью (26,70С) в среднем оказывается 50 ю.ш., но самые жаркие районы находятся еще южнее, т.е. на материках Африки и Австралии (300С и 320 С).
4.Температурный градиент направлен к полюсам, т.е. температура к полюсам понижается, причем в южном полушарии значительнее, чем в Северном. Разница между экватором и Северным полюсом составляет 270 С зимой 670С, а между экватором и Южным полюсом летом 40 0 С, зимой 74 0 С.
5.Падение температуры от экватора к полюсам неравномерное. В тропических широтах оно происходит очень медленно: на 10 широты летом 0,06 – 0,090 С, зимой 0,2 – 0,3 0С. Вся тропическая зона в температурном отношении оказывается весьма однородной.
6.В северном умеренном поясе ход январских изотерм очень сложен. Анализ изотерм выявляет следующие закономерности:
- в Атлантическом и Тихом океанах значительна адвекция тепла, связанная с циркуляцией атмосферы и гидросферы;
- примыкающая к океанам суша – Западная Европа и Северо-Западная Америка – имеют высокую температуру (на побережье Норвегии 00С);
- огромный массив суши Азии сильно выхоложен, на нем замкнутые изотермы очерчивают очень холодную область в Восточной Сибири, до – 480 С.
- изотермы в Евразии идут не с Запада на Восток, а с северо-запада на юго-восток, показывая, что температуры падают в направлении от океана вглубь материка; через Новосибирск проходит та же изотерма, что и по Новой Земле (-180С). На Аральском море также холодно, как и на Шпицбергене (-140С). Подобная картина, но несколько в ослабленном виде, наблюдается и в Северной Америке;
7.Июльские изотермы идут достаточно прямолинейно, т. к. температура на суше определяется солнечной инсоляцией, а перенос тепла по океану (Гольфстрим) летом на температуру суши заметно не влияет, ибо она нагрета Солнцем. В тропических широтах заметно влияние холодных океанских течений, идущих вдоль западных берегов материков (Калифорнийское, Перуанское, Канарское и др.), которые охлаждают прилегающую к ним сушу и вызывают отклонение изотерм в сторону экватора.
8.В распределении тепла по земному шару отчетливо выражены следующие две закономерности: 1) зональность, обязанная фигуре Земли; 2) секторность, обусловленная особенностями усвоения солнечного тепла океанами и материками.
9.Средняя температура воздуха на уровне 2 м для всей Земли составляет около 14 0 С, январская 120 С, июльская 16 0 С. Южное полушарие в годовом выводе холоднее северного. Средняя температура воздуха в северном полушарии составляет 15,20 С, в южном – 13,30 С. Средняя температура воздуха для всей Земли совпадает приблизительно с температурой, наблюдающейся около 400 с.ш. (140 С).

29. Тепловые пояса.

Тепловые пояса
Основная закономерность в распределении тепла по земной поверхности – зональность – позволяет выделить тепловые (температурные) пояса. Тепловые пояса не совпадают с поясами освещения, образующимися по астрономическим законам, т.к. тепловой режим зависит не только от освещения, но и от ряда других факторов.
По обе стороны от экватора, приблизительно до 300 с.ш. и ю.ш., находится жаркий пояс, ограниченный годовой изотермой 200 С.
В средних широтах находятся умеренные температурные пояса. Они ограничены изотермами 100 С самого теплого месяца. С этими изотермами совпадает граница распространения древесных растений (наименьшие средние температуры, при которых вызревают семена деревьев составляют 100 С; при меньшей месячной сумме температур леса не возобновляются).
В субполярных широтах простираются холодные пояса, полярными границами которых являются изотермы 00С самого теплого месяца. Они в общих чертах совпадают с зонами тундр.
Вокруг полюсов находятся пояса вечного мороза, в которых температура любого месяца ниже 00 С. Здесь лежат вечные снега и льды.
Жаркий пояс, несмотря на свою большую площадь, в тепловом отношении довольно однороден. Средняя температура года изменяется от 26 0 с на экваторе до 20 0 С на тропических пределах. Годовые и суточные амплитуды незначительны. Сравнительно однородны в термическом отношении пояса холодный и вечного мороза в силу небольших пределов. Умеренные пояса, охватывающие широты от субтропических до субполярных, термически весьма неоднородны. Здесь годовая температура на одних широтах достигает 200 С, а на других даже температура самого теплого месяца не превышает 100С. Выявляется хорошо выраженная дифференциация умеренных поясов. Северный умеренный пояс в связи с его континентальностью (материковостью) дифференцируется и в долготном направлении: в годовом ходе температур здесь ясно сказываются приморское и внутриматериковое положение.
В умеренных поясах в самом первом приближении выделяются субтропические широты, термический режим которых обеспечивает произрастание субтропической растительности, умеренно-теплые широты, где тепло обеспечивает существование широколиственных лесов и степей, и бореальные широты с суммой тепла, достаточной только для распространения хвойных лесов и мелколиственных деревьев.
При общем сходстве температурных поясов обоих полушарий ясно выступает тепловая диссиметрия Земли относительно экватора. Термический экватор смещен к северу относительно географического, северное полушарие теплее южного, в южном полушарии ход температуры океанический, в северном – материковый; Арктика теплее Антарктики.

30. Морской и континентальный ход температуры.

Морской и континентальный ход температуры
Секторные различия теплового режима нижней тропосферы проявляются в степени океаничности или континентальности климата. Наиболее ярко эта черта климата проявляется в годовой амплитуде температур, то есть в разнице между наиболее теплым и холодным месяцами.
Величина годовой амплитуды определяется следующими тремя факторами:

1. широтными различиями в интенсивности солнечной радиации в зимнюю и летнюю части года;

2. соотношением площадей материка и океана в данном широтном поясе;

3. затратами тепла на испарение, зависящими с свою очередь от влажности климата.

Наибольшие годовые амплитуды от 23 до 320 С свойственны среднему поясу наибольшей площади континентов, в котором различное нагревание и охлаждение материков и океанов, образование положительных и отрицательных температурных аномалий обусловливает различный ход температуры на океане и в глубине континентов.
Рассмотрим ход годовой амплитуды температур в условиях морского, переходного и континентального климатов в умеренном поясе.
В качестве границы между морским и континентальным климатами средних широт можно принять годовую амплитуду 250 С. Если годовая амплитуда меньше 250 С, климат морской, больше – материковый. Между ними находится широкая меридиональная полоса переходного климата с разницей температур крайних месяцев около 230 С. Она проходит через Карелию, Беларусь, Западную Украину.
Годовая амплитуда температур в континентальных климатах нарастает за сет зимних холодов – в приморских странах зима теплая, в материковых морозная. Летние месяцы внутри материков жаркие, а на берегах океанов теплые, но разница не так значительна, как зимой.
Отличительной чертой морского климата является смещение самого теплого времени с июля на август, а самого холодного с января на февраль.
Различие между морским и материковым климатами заключается и в продолжительности переходных периодов: весна и осень в морских странах продолжительные – до двух месяцев, а в континентальных – до двух недель.
Показателями континентальности или океаничности климата служит и суточная амплитуда температур. Внутри материков днем жарко, ночью холодно, на берегах морей днем тепло, ночью умеренно прохладно.
Годовая амплитуда температур на всей Земле равно в среднем 100 С: в северном полушарии она составляет 13,80С, а в южном – 6,2 0 С.
Наибольшая на Земле годовая амплитуда зафиксирована в Восточной Сибири: абсолютный максимум и минимум в Верхоянске, например, составляют +34 и – 680 С; в Оймяконе +31 и -710 С. Таким образом амплитуда абсолютных температур составляет 102 0 С.
Численные показатели континентальности климата. Современные данные о роли испарения и скрытой теплоты парообразования в нагревании атмосферы дают основания по-новому подойти к характеристике морского и континентального климата. Очевидно, что физическая сущность континентальности заключается в том, что территория с таким климатом получает мало тепла от фазового перехода пара в воду, а с морским – много. Соответственно, в сухом воздухе велико летнее и дневное нагревание турбулентным теплообменом, а зимой и ночью большое излучение.
Основной показатель континентальности климата может быть выведен из формулы теплового баланса. Индекс континентальности обратно пропорционален затрате тепла на испарение.
На океанах на испарение затрачивается в среднем 100 ккал/см2 в год. Это можно принять за 100 % океаничности или 0 % континентальности климата. В Восточной Сибири, Центральной Австралии и Сахаре на испарение расходуется только 10 ккал/см2 в год. Континентальность такого климата можно выразить так: 100 ккал на океанах – 10 ккал на данной территории равно 90. Это число принимается за 90 % континентальности. Климата с континентальностью 100 % на Земле нет. Такой показатель означал бы, что территория находится вне влияния океана и выпала из планетарного влагооборота.
В Амазонии на испарение расходуется 80 ккал/см2 в год, или Континентальность составляет примерно 20 %. У побережья Западной Европы соответственно 60 ккал/см2 в год, или Континентальность 40 %. В Западной Европе, Северной Америке, на Дальнем Востоке, в Индокитае, в Центральной Америке и Центральной Африке – 40 ккал/см2 в год, или континентальность 60 %.
В тропическом поясе Континентальность выражается также в отрицательном водном балансе, в большой суточной амплитуде температур и сопутствующих этому явлениях.

31. Атмосферное давление. Понятие о барической ступени.

Атмосферное давление
Движение молекул воздуха и его собственная масса создают атмосферное давление. При спокойном состоянии воздуха величина его на единицу площади соответствует массе находящейся над ней воздушного столба.
Известно, что сила тяжести изменяется с широтой, а величина воздушного столба зависит от высоты над уровнем моря и от температуры. В этой связи за нормальное принято атмосферное давление над уровнем моря под широтой 450 при температуре воздуха 00 С. В данном случае масса воздуха уравновешивается ртутным столбом высотой в 70 мм. Установлено, что атмосфера на 1 см2 земной поверхности давит с силой 1 кг 33 г.
Давление в 1 000 000 дин (система СНГ) называется баром. Тысячная доля бара называется миллибаром.
1 мб равен 0, 75 мм. рт. ст.
1 мм рт. ст. равен 1, 33 мб.
На метеорологических станциях атмосферное давление измеряется барометрами со шкалой в миллибарах. В этих же единицах строятся метеорологические климатические карты.
Известно, что чем выше над земной поверхностью лежит данная точка, тем меньше находящийся над ней столб воздуха, а следовательно, и атмосферное давление. Так как воздух сжимаем, то давление с высотой падает не линейно, а в геометрической прогрессии, то есть в нижних слоях быстрее, чем в верхних. Изменение давления с высотой выражается барической ступенью.
Барическая ступень – это расстояний по вертикали в метрах, на которое атмосферное давление уменьшается вверх или увеличивается вниз на 1 мм, или на 1 мб.
На одной и той же высоте размер барической ступени зависит от температуры: она больше в теплом воздухе и меньше в холодном.
Наблюдения за изменением атмосферного давления ведут метеостанции. Так как они лежат на разной абсолютной высоте в различных точках земного шара, то сравнение полученных на них величин давления возможно только после приведения показателей барометров к одному уровню – уровню моря, реже – к уровню земной поверхности.

32. Барическое поле. Понятие о барических системах.

арическое поле
Давление атмосферы на земную поверхность и его распределение в пространстве и изменение во времени называется барическим полем. Оно непрерывно изменяется во времени и неравномерно распределяется по географическим зонам и регионам: есть области преобладания высокого давления и есть области низкого давления.
Области высокого и низкого давления, на которые расчленено барическое поле, называются барическими системами. Для характеристики барического поля используются карты изобар и барической топографии.
Распределение давления у земной поверхности показывается изобарами – линиями равных давлений. Чаще всего карты изобар строятся на избранный час. В климатологии пользуются обычно средними многолетними показателями для июля и января; несколько реже прибегают к картам изобар других месяцев.
Области низкого давления обрисовываются системой замкнутых овальных изобар с наименьшими отметками в центре. Они называются барическими минимумами или реже, депрессиями. На карте изобар января видны обширные барические минимумы – один в северной части Атлантического океана с центром в Исландии – Исландский минимум, второй в северной части Тихого океана около Алеутских островов – Алеутский минимум. В течение всего года в Южном океане располагается Антарктический пояс низкого давления.
Полоса низкого давления, уходящая в сторону от барического минимума, называется ложбиной. Исландский минимум образует ложбину в сторону Шпицбергена.

Подвижные барические минимумы называются циклонами. Степень падения атмосферного давления в центре циклона и минимума вообще обозначается термином «глубина циклона», или «глубина депрессии». Обычно давление в циклонах падает до 980-970 мб, в наиболее глубоких циклонах – до 925 мб, а в тропических тайфунах - даже до 900 мб.
Области высокого давления называются барическими максимумами или антициклонами. Они изображаются также замкнутыми изобарами, в центре которых давление максимальное. В центре антициклонов давление может достигать 1 087,8 мб (Среднесибирское плоскогорье, озеро Агата, 1968 год). Полоса высокого, или повышенного, давления, отходящая от барического максимума, называется отрогом, а очень узкая и длинная полоса - осью высокого давления.
На картах изобар и июля, и января отчетливо обрисовываются два ряда тропических барических максимумов: у северного тропика Азорский максимум в Атлантическом океане и Гавайский максимум в Тихом океане. У Южного тропика располагаются Южно-Атлантический, Южно-Тихоокеанский и Южно-Индийский максимумы.
Азорский максимум во все сезоны года дает отрог в сторону Средиземного моря, а зимой соединяется с Сибирским максимумом, или антициклоном.
Распределение давления в одной плоскости – на уровне моря – еще не вскрывает условий динамики воздушных масс, поскольку они захватывают и верхние слои. Необходима также характеристика давления воздуха на всех высотных уровнях, во всей толще тропосферы и нижней стратосферы. Для этого используют изобарические поверхности.
Изобарические поверхности – это поверхности равного давления, которые показывают распределение потенциальной энергии воздушной массы (геопотенциала), зависящей от ее положения в поле силы тяжести. Изобарические поверхности вскрывают зависимость динамики атмосферы от теплоты (температуры) воздуха.
Воздух, как известно, нагретый от Земли, поднимается. Но одно только это обстоятельство не приведет к понижению давления, поскольку общая масса воздушного столба при восходящих токах не уменьшается. Для того чтобы давление над какой-то площадью уменьшилось, должен произойти отток с нее части воздуха. Это происходит при изменении положения изобарических поверхностей.
Допустим, что сначала две поверхности – водная и материковая – имели одинаковую температуру и, следовательно, равное давление, например 1 013 мб. С восходом Солнца поверхность суши нагрелась сильнее, чем воды; над ней возникли восходящие токи воздуха и поднялись изобарические поверхности. Вверху над сушей плотность воздуха (давление) увеличилось и он стал стекать поверху в сторону моря. С этого момента давление на суше начинает падать, а на море в связи с притоком воздуха увеличиваться. Отсюда понизу воздух потечет на сушу, стремясь выровнять нарушенное теплом равновесие.
Распределение атмосферного в трехмерной атмосфере показывается на картах барической топографии. Они так называются потому, что на них изображается рельеф (термин условный) поля давления, или барический рельеф. На картах абсолютной барической топографии (АТ) изображается высота избранной барической поверхности, например, 900, 700, 500, 300 и 200 мб над уровнем моря. Высоты измеряются в геопотенциальных метрах (ГМП). Такой метр показывает потенциальную энергию единицы массы в поле силы тяжести или работу, которую нужно затратить на подъем единицы массы на высоту 1 метр. Практически 1 ГПМ равен обычному метру. На картах барической топографии высоты показываются в десятках метров или в декаметрах.

33. Барические минимумы (депрессии) и барические максимумы. Изобарические поверхности.

34. Горизонтальный барический градиент. Ветер.

Горизонтальный барический градиент. Ветер
Разность атмосферного давления между двумя областями как у земной поверхности, так и выше нее вызывает горизонтальное перемещение воздушных масс – ветер. С другой стороны, сила тяжести и трение о земную поверхность удерживают массы воздуха на месте. Следовательно, ветер возникает только при таком перепаде давления, который достаточно велик, чтобы преодолеть сопротивление воздуха и вызвать его движение. Очевидно, что разность давлений должна быть отнесена к единице расстояния. В качестве единицы расстояния раньше принимали 10 меридиана, то есть 111 км. В настоящее время для простоты расчетов условились брать 100 км.
Горизонтальным барическим градиентом называется падение давления в 1 мб на расстояние в 100 км по нормали к изобаре в сторону убывающего давления.
Скорость ветра всегда пропорциональна градиенту: чем больше избыток воздуха на одном участке в сравнении с другим, тем сильнее его отток. На картах величина градиента выражается расстояниями между изобарами: чем ближе одна к другой, тем градиент больше и ветер сильнее.
Кроме барического градиента на ветер действуют вращение Земли, или сила Кориолиса, центробежная сила и трение.
Вращение Земли (сила Кориолиса) отклоняет ветер в северном полушарии вправо (в южном полушарии влево) от направления градиента. Теоретически рассчитанный ветер, на который действуют только силы градиента и Кориолиса, называется геострофическим. Он дует по касательной к изобарам.
Чем сильнее ветер, тем больше его отклонение под действием вращения Земли. Оно нарастает с увеличением широты. Над сушей угол между направлением градиента и ветром достигает 45-500, а над морем – 70-800; средняя величина его равна 600.
Центробежная сила действует на ветер в замкнуns[ барических системах – циклонах и антициклонах. Она направлена по радиусу кривизны траектории в сторону ее выпуклости.
Сила трения воздуха о земную поверхность всегда уменьшает скорость ветра. Скорость ветра обратно пропорциональна величине трения. При одном и том же барическом градиенте над морем, степными и пустынными равнинами ветер сильнее, чем над пересеченной холмистой и лесной местностью, а тем более горной. Трение сказывается в нижнем, примерно 1000 – метровом, слое, называемом слоем трения. Выше ветры геострофические.
Направление ветра определяется стороной горизонта, откуда он дует. Для обозначения его обычно принимается 16-лучевая роза ветров: С, CCЗ, CЗ, ЗСЗ, З, ЗЮЗ, ЮЗ, ЮЮЗ, Ю, ЮЮВ, ЮВ, ВЮВ, В, ВСВ, СВ, ССВ.
Иногда вычисляется угол (румб) между направлением ветра и меридианом, причем север (С) считается за 00 или 3600, восток (В) – за 900, юг (Ю) –

35. Причины и значение неоднородности барического поля и циркуляции атмосферы.







Дата добавления: 2015-10-15; просмотров: 1123. Нарушение авторских прав; Мы поможем в написании вашей работы!



Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия