Студопедия — ИНТЕРФЕРЕНЦИЯ ВОЛН
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ИНТЕРФЕРЕНЦИЯ ВОЛН






Интерференцией волн называют явление усиления и ослабления волн в определённых точках пространства при их наложении. Интерферировать могут только когерентные волны. Когерентными называются волны (источники), частоты которых одинаковы и разность фаз колебаний не зависит от времени. Геометрическое место точек, в которых происходит усиление или ослабление волн соответственно называют интерференционным максимумом или интерференционным минимумом, а их совокупность носит название интерференционной картины. В связи с этим можно дать иную формулировку явления. Интерференцией волн называется явление наложения когерентных волн с образованием интерференционной картины.

Рассмотрим процесс наложения двух когерентных волн любой природы (механические, электромагнитные). Пусть эти волны создаются когерентными источниками O 1 и O 2, находящимися в одной среде, амплитуды и циклические частоты которых одинаковы и равны А и w, а начальные фазы равны нулю. Расстояние между источниками О 1 и О 2 намного меньше расстояний х 1 и х 2от источников до точки наблюдения М. Тогда волны от источников О 1 и О 2 распространяются практически параллельно, и вызываемые ими колебания в точке M (рис. 3) находим, используя уравнение плоской монохроматической волны (см. (1)):

(4)

где x1 и x2 — мгновенные значения колеблющейся величины; l — длина волны в данной среде; x 1 и x 2 — расстояние от источников до точки наложения волн. Результирующее колебание s равно алгебраической сумме колебаний, обусловленных отдельными волнами, поскольку колебания происходят в одном направлении, т.е. Используя соотношение и полагая и , получаем: Выражение

(5)

M
х 2
х 1
О 2
О 1
Рис. 3

не зависит от времени. Поэтому его можно рассматривать как амплитуду результирующих колебаний, происходящих в точке М. В формуле (5) взята абсолютная величина, так как амплитуда по определению всегда положительная. С учётом этого уравнение колебаний в этой точке запишется в виде Таким образом, в произвольной точке М происходят гармонические колебания с той же циклической частотой w, амплитуда которых зависит от геометрической разности (х 2 х 1) хода волн. Найдём условия усиления и ослабления колебаний в различных точках пространства. Очевидно, что амплитуда В результирующих колебаний будет максимальной в тех точках, для которых Это возможно, если , где m = 0, ±1, ±2, ¼. Отсюда

x 2 - x 1 = m l, (6)

где m называют порядком интерференционного максимума. Из этого выражения следует, что когерентные волны, распространяющиеся в одной среде, усиливаются в точках, для которых геометрическая разность хода равна целому числу длин волн. Следовательно, соотношение (6) является условием интерференционного максимума.

Интенсивность результирующей волны будет наименьшей во всех точках,

для которых т.е. когда Отсюда

x 2 - x 1 = (m + 1 / 2)l, (7)

т.е. когерентные волны, распространяющиеся в одной среде, ослабляются в точках, для которых геометрическая разность хода равна полуцелому числу длин волн. Поэтому соотношение (7) является условием интерференционного минимума.

Изложенная теория интерференции справедлива для волн любой природы, в том числе для световых волн. Однако интерференционная картина световых волн может наблюдаться только в специальных условиях. Действительно, при наложении света одинакового цвета, испускаемого двумя независимыми источниками, например лампами накаливания, интерференция не происходит, поскольку эти источники некогерентные. В этом случае наблюдается суммирование интенсивностей световых волн. Для того чтобы наблюдать интерференцию света, надо излучение от одного и того же источника разделить на два пучка и заставить их затем попасть на экран различными путями. Это достигается за счёт отражения и преломления света. Рассмотрим один из методов наблюдения интерференции световых волн — бипризму Френеля. Бипризма (БП) состоит из двух стеклянных призм с малыми преломляющими углами, сложенных своими основаниями. Источником света служит ярко освещённая щель О, установленная параллельно ребру бипризмы (рис. 4). После преломления в бипризме пучок света разделяется на два пучка когерентных волн. В области АБ экрана Э волны налагаются, и возникает интерференционная картина в виде светлых и тёмных параллельных интерференционных полос.

О
О1
О2
Б
А
Рис. 4







Дата добавления: 2014-12-06; просмотров: 900. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия