ЗАКОН ДЕ МОРГАНА
- общее название логических законов, связывающих с помощью отрицания конъюнкцию («и») и дизъюнкцию («или»). Названы именем англ. логика XIX в. А. де Моргана. Один из этих законов можно выразить так: отрицание конъюнкции эквивалентно дизъюнкции отрицаний. Напр.: «Неверно, что завтра будет холодно и завтра будет дождливо, тогда и только тогда, когда завтра не будет холодно или завтра не будет дождливо». Другой закон: отрицание дизъюнкции эквивалентно конъюнкции отрицаний. Напр.: «Неверно, что ученик знает арифметику или знает геометрию, тогда и только тогда, когда он не знает ни арифметики, ни геометрии». В терминах символики логической (р, q — некоторые высказывания; & - конъюнкция; v - дизъюнкция; ~ — отрицание, «неверно, что»; = — эквивалентность, «если и только если») данные два закона представляются формулами: ~ (p & q) = (~ p v ~ q), неверно, что р и q, если и только если неверно р и неверно q; ~ (p v q) = (~ p & ~ q), неверно, что или р, или q, если и только если неверно р и неверно q. На основе этих законов, используя отрицание, связку «и» можно определить через «или», и наоборот: «р и q» означает «Неверно, что не - р или не - q», «р или q» означает «Неверно, что не - р и не - q». Напр., «Идет дождь и идет снег» означает «Неверно, что нет дождя или нет снега»; «Сегодня холодно или сыро» означает «Неверно, что сегодня не холодно и не сыро». ЗАКОН ДИСТРИБУТИВНОСТИ (от англ. distribution - распределение, размещение) - общее название группы логических законов сходной структуры. Эти законы позволяют распределить одну логическую связь относительно другой. Полный 3. д. конъюнкции относительно дизъюнкции с использованием символики логической формулируется так (р, q, r — некоторые высказывания; & - конъюнкция, «и»; v - дизъюнкция, «или»; = — эквивалентность, «если и только если»): p & (q v r) = (p & q)v(p & r), первое и (второе или третье), если и только если (первое и второе) или (первое и третье). Напр.: «Сегодня идет дождь и завтра ясно или послезавтра ясно в том и только в том случае, когда сегодня идет дождь и завтра ясно или сегодня идет дождь и послезавтра ясно». Полный 3. д. дизъюнкции относительно конъюнкции: p v(q & r) = (p v q) & (p v r), первое или (второе и третье), если и только если (первое или второе) и (первое или тре'тье). Напр.: «Завтра будет солнечно или послезавтра будет мороз и снег тогда и только тогда, когда завтра будет солнечно или послезавтра будет мороз и завтра будет солнечно или послезавтра будет снег». Закон самодистрибутивности импликации (->, «если, то») дает возможность распределять импликацию по импликации: (p - > (q - > r))- > ((p - > q)- > (p - > r)), если (если первое, то (если второе, то третье)), то (если (если первое, то второе), то (если первое, то третье)). Этот закон верен для импликации материальной, но не имеет места для целого ряда иных импликаций, вводимых в современной логике.
|