ЗАКОН КОСВЕННОГО ДОКАЗАТЕЛЬСТВА
- логический закон, позволяющий делать заключения об истинности какого-то высказывания на основании того, что отрицание этого высказывания влечет противоречие. Напр.: «Если из того, что 11 не является простым числом, вытекает то, что оно делится на число, отличное от самого себя и единицы, и то, что оно не делится на такое число, то 11 есть простое число». С использованием символики логической (p, q — некоторые высказывания; -> — импликация, «если, то»; & — конъюнкция, «и»; ~ — отрицание, «неверно, что») закон записывается так: (~ p - > q) & (~ p - > ~ q)- > p, если (если не - р, то q) и (если не - р, то не - q), то р. 3. к. д. обычно называется также формула: (~ p - > q & ~ q)- > p, если (если не - р, то q и не - q), то р. Напр.: «Если из-того, что 10 не является четным числом, вытекает то, что оно делится и не делится на 2, то 10 - четное число». ЗАКОН ЭКСПОРТАЦИИ - ИМПОРТАЦИИ (от лат. exportare -вывозить, importare - ввозить) — логический закон, говорящий о заменимости в определенных случаях конъюнкции («и») импликацией («если, то»), и наоборот. Его можно передать так: первое и второе влечет третье тогда и только тогда, когда первое влечет, что второе влечет третье. Закон слагается из двух импликаций. Одна из них - законэкспортации (вынесения) - с использованием символики логической представляется так (р, q, r — некоторые высказывания, & -конъюнкция, -> - импликация): ((p& q)- > r)- > (p - > (q - > r)), если (если р и q, то r), то (если р, то (если q, то r)). Напр.: «Если верно, что плоская геометрическая фигура, имеющая четыре равные стороны и четыре равных угла, является квадратом, то, если у плоской фигуры четыре равные стороны, она является квадратом, если у нее четыре равных угла». Вторая импликация, входящая в данный закон, именуется законом импортации (внесения). Символическая ее запись: (p - > (q - > r))- > ((p& q)- > r), если верно, что (если р, то (если q, то r)), то (если р и q, то r). ЗНАК - материальный предмет, воспроизводящий свойства, отношения некоторого другого предмета. Различают языковые и неязыковые З. Среди последних выделяют три разновидности. 3. - копии обладают определенным сходством с представляемыми ими объектами, напр. фотографии, отпечатки пальцев и т. п. 3. - признаки связаны с обозначаемыми объектами как следствия со своими причинами, напр. дым - 3. и следствие огня. З. - символы представляют собой некоторые наглядные образы, используемые для представления отвлеченного и часто весьма значительного содержания, напр. чайка — символ Московского Художественного театра, Московский Кремль — символ Москвы и России и т. п. Языковые 3. характеризуются тем, что не функционируют независимо друг от друга. Они объединяются в систему, правила которой определяют способы построения 3. — правила грамматики или синтаксиса, а также правила приписывания знакам смысла, значения, употребления. Выделяют 3. естественных и искусственных языков. 3. естественного языка — отдельные слова, предложения, выражения, тексты и т. п. — состоят как из звуковых 3., так и из соответствующих им рукописных, типографских и иных 3. Развитие науки привело к введению в естественные языки специальных графических 3., используемых для выражения научных понятий: математических 3., химических, физических и иных 3. Из 3. такого рода строятся искусственные языки, правила которых — в отличие от правил естественных языков — формулируются в явном виде. Искусственные языки находят преимущественное применение в науке, где они служат не только для общения между учеными, но и как мощное средство получения новой информации об изучаемых объектах. Различают предметное, смысловое и экспрессивноезначение 3. Предмет, обозначаемый 3., называется предметнымзначением или денотатом 3.3. обозначает свой предмет, но выражает свой смысл - свойство представлять определенные стороны, черты, характеристики обозначаемого объекта, фиксирующие область приложения 3. В науке смысл 3. выражается в понятии. Под экспрессивным значением 3. понимают выражаемые с помощью данного 3. чувства и желания человека, употребившего данный 3. в определенной ситуации. С развитием способности извлекать и перерабатывать информацию о предметах, оперируя не с самими предметами, а со 3., их представляющими, связаны революционные перевороты в развитии науки. Напр., разработка математической символики в XVI-XVII вв. содействовала резкому ускорению развития математики и расширению сферы ее приложений в механике, астрономии, физике; развитие формализованных, информационных, машинных языков было тесно связано с развитием кибернетики. Создание специальной символики обычно открывает перед наукой новые возможности: рационально построенные системы 3. позволяют в обозримой форме выражать соотношения между изучаемыми явлениями; добиваться однозначности используемых терминов; фиксировать такие понятия, для которых в обычном языке нет словесных выражений; формулы часто выражают не только некоторый готовый результат, но и тот путь, следуя которому этот результат можно получить. Выражение информации с помощью 3. делает возможной ее передачу по техническим каналам связи и ее математическую, логическую, статистическую обработку с помощью вычислительных устройств (см.: Денотат, Смысл, Имя).
|