I. Решение логических задач средствами алгебры логики
Обычно используется следующая схема решения: 1. изучается условие задачи; 2. вводится система обозначений для логических высказываний; 3. конструируется логическая формула, описывающая логические связи между всеми высказываниями условия задачи; 4. определяются значения истинности этой логической формулы; 5. из полученных значений истинности формулы определяются значения истинности введённых логических высказываний, на основании которых делается заключение о решении. Пример 1. Трое друзей, болельщиков автогонок " Формула-1", спорили о результатах предстоящего этапа гонок. — Вот увидишь, Шумахер не придет первым, — сказал Джон. Первым будет Хилл. — Да нет же, победителем будет, как всегда, Шумахер, — воскликнул Ник. — А об Алези и говорить нечего, ему не быть первым. Питер, к которому обратился Ник, возмутился: — Хиллу не видать первого места, а вот Алези пилотирует самую мощную машину. По завершении этапа гонок оказалось, что каждое из двух предположений двоих друзей подтвердилось, а оба предположения третьего из друзей оказались неверны. Кто выиграл этап гонки? Решение. Введем обозначения для логических высказываний: Ш — победит Шумахер; Х — победит Хилл; А — победит Алези. Реплика Ника " Алези пилотирует самую мощную машину" не содержит никакого утверждения о месте, которое займёт этот гонщик, поэтому в дальнейших рассуждениях не учитывается. Зафиксируем высказывания каждого из друзей: Учитывая то, что предположения двух друзей подтвердились, а предположения третьего неверны, запишем и упростим истинное высказывание Высказывание истинно только при Ш=1, А=0, Х=0. Ответ. Победителем этапа гонок стал Шумахер. Пример 2. Некий любитель приключений отправился в кругосветное путешествие на яхте, оснащённой бортовым компьютером. Его предупредили, что чаще всего выходят из строя три узла компьютера — a, b, c, и дали необходимые детали для замены. Выяснить, какой именно узел надо заменить, он может по сигнальным лампочкам на контрольной панели. Лампочек тоже ровно три: x, y и z. Инструкция по выявлению неисправных узлов такова: 1. если неисправен хотя бы один из узлов компьютера, то горит по крайней мере одна из лампочек x, y, z; 2. если неисправен узел a, но исправен узел с, то загорается лампочка y; 3. если неисправен узел с, но исправен узел b, загорается лампочка y, но не загорается лампочка x; 4. если неисправен узел b, но исправен узел c, то загораются лампочки x и y или не загорается лампочка x; 5. если горит лампочка х и при этом либо неисправен узел а, либо все три узла a, b, c исправны, то горит и лампочка y. В пути компьютер сломался. На контрольной панели загорелась лампочка x. Тщательно изучив инструкцию, путешественник починил компьютер. Но с этого момента и до конца плавания его не оставляла тревога. Он понял, что инструкция несовершенна, и есть случаи, когда она ему не поможет. Какие узлы заменил путешественник? Какие изъяны он обнаружил в инструкции? Решение. Введем обозначения для логических высказываний: a — неисправен узел а; x — горит лампочка х; b — неисправен узел b; y — горит лампочка y; с — неисправен узел с; z — горит лампочка z. Правила 1-5 выражаются следующими формулами: Формулы 1-5 истинны по условию, следовательно, их конъюнкция тоже истинна: Выражая импликацию через дизъюнкцию и отрицание (напомним, что ), получаем: Подставляя в это тождество конкретные значения истинности x =1, y =0, z =0, получаем: Отсюда следует, что a=0, b=1, c=1. Ответ на первый вопрос задачи: нужно заменить блоки b и c; блок а не требует замены. Ответ на второй вопрос задачи получите самостоятельно.
|