Импульсный отжиг ионнолегированных слоев
В настоящее время проводятся многочисленные исследования по использованию лазерного излучения для отжига ионнолегированных слоев, причем эти исследования охватывают практически все виды ионов, а также энергии и дозы обучения, используемые в современной технологии создания ИМС. Наличие такого обширного экспериментального материала позволяет уже на сегодняшний день выделить общие закономерности лазерного отжига слоев кремния, легированных различными ионами. Так, было установлено, что во всех случаях лазерный отжиг ионнолегированных слоев носит пороговый характер, т.е. при плотностях энергии лазерного излучения меньше некоторого порогового значения (Wпор) отжиг дефектов, вносимых имплантацией ионов, не имеет места. При этом значение Wпор зависит от ряда факторов: типа применяемого лазера, массы и энергии внедряемых ионов, дозы легирования, ориентации подложки, температуры подложки. Верхним пределом плотности энергии при лазерном отжиге является так называемая энергия деструкции (Wдестр.), при которой происходит нарушение верхнего слоя материала. При этом Wдестр зависит от тех же параметров, что и Wпор. Следовательно, плотность энергии при лазерном отжиге должна удовлетворять условию Wпор£ Wэф£ Wдестр., что обеспечивает наиболее эффективный отжиг. Согласно литературным данным, пороговая мощность отжига импульсом неодиевого лазера, который является наиболее перспективным для этих целей составляет 2, 5х107 Вт/см при длительности импульса 15-20х10-9 с. Указанный режим является оптимальным с точки зрения получения эффективного отжига. О пороге кристаллизации можно судить и по исчезновению сигнала ЭПР, связанного с присутствием аморфной фазы и появлением в спектре ЭПР линий, обусловленной электронами проводимости в кремнии, легированном фосфором при мощности импульсов неодиевого лазера 2х107 Вт/см. Исследования ионнолегированных слоев после лазерного отжига при эффективных плотностях энергии, показали, Что в отличие от термического отжига лазерный отжиг позволяет получить концентрацию носителей заряда выше предела ее растворимости. Так, при имплантации ионами элементов III (Ga, In) и IV (As, Sb, Bi) групп с энергиями от 100 до 250 кэВ и дозами от 1015 до 1017 см-2 после лазерного отжига с использованием рубинового лазера при плотности энергии 1, 5 Дж/см2 и длительности импульса 15x10-9 с превышение предела растворимости составило от 4 до 500 раз. Данные результаты полностью подтверждают мысль о том, что при лазерном отжиге имеет место жидкофазная рекристаллизация при температурах выше температуры плавления кремния. Следует ответить, что высокие коэффициенты использования примеси имеют место лишь для доз легирования выше 1019 м-2. Однако при уменьшении дозы легирования происходит снижение доли активных атомов. Даже использование импульсов с энергией вблизи порога разрушения не приводит к конверсии слоя при дозе < 1016 м-2. Вследствие высоких значений активации внедренной примеси при лазерном отжиге происходит значительное улучшение и других электрофизических параметров ионнолегированных слоев, а именно, поверхностного сопротивления, концентрации носителей, времени жизни и других. Важным электрофизическим параметром ионнолегированных слоев является профиль распределения внедренной примеси, после лазерного отжига. Изучению данного вопроса в литературе уделялось большое внимание, т.к. наличие перераспределения являлось косвенным доказательством справедливости модели плавления приповерхностного слоя при лазерном отжиге наносекундными импульсами. Проведенные исследования показали, что во всех случаях для любой примеси и при любой дозе наблюдается перераспределение примеси как в направлении к поверхности, так и вглубь кристалла. Причем, теоретически было доказано, что такое перераспределение примеси может быть вызвано лишь диффузией в жидком состоянии. При этом конечный профиль распределения примеси зависит от плотности энергии лазерного излучения, дозы легирования, числа последовательных импульсов и коэффициента распределения примеси. Так, для примеси с низким коэффициентом распределения (Cu, Fe) лазерный отжиг вызывает значительное перераспределение примеси в направлении к поверхности за счет того, что фронт плавления перемещается вначале вглубь имплантированного слоя, а затем к его поверхностиочищая этот слой от посторонних примесей. Например, при легировании медью (Е= 150 кэВ, D=6, 9х1015 см-2) почти вся внедренная примесь после лазерного отжига была локализована в приповерхностном слое толщиной 20 нм. В случае если коэффициент распределения примеси > 10-3, перераспределение примеси происходит вглубь кристалла. Причина эта вызвана переплавом приповерхностной области и определяется коэффициентом диффузии в жидком кремнии, который достигает примерно 10-8 м2.с-1; так что даже при; длительности 10-7 с характерная длина диффузии будет составлять 40-50 нм. Учитывая, что диффузионная длина зависит также от времени существования расплава, которое; как указывалось выше, составляет 800 нс, диффузионная длина может изменяться от 0, 25 до 0, 70 мкм. На высокую эффективность лазерного отжига ионнолегированных слоев указывают сравнительные исследования слоевой проводимости кремния, легированного В+, Р+, Sb+ после термического (Т=800-1000°С и t=30 мин) и лазерного (W=107 Вт.см-2, t=15-20 нс, l=0, 69 и 1, 06 мкм) отжигов. Сопоставление значений проводимости после лазерного (sл) термического (sт) отжигов показало, что проводимость слоев у образцов, отожженных лазерным лучом, выше по сравнению с sт. Так отношение sл/sт составляет 1, 02-1, 65 при использовании при термическом отжиге температуры 1000°С и 1, 035-8, 75 при Т=800°С в зависимости от дозы легирования. Результаты холловских измерений показали, что при лазерном отжиге между концентрацией носителей и подвижностью имеют место такие же соотношения, как и в слоях, легированных методом диффузии. Важным показателем качества ионнолегированных слоев после лазерного отжига является его кристаллическая структура. Исследования, проведенные методом электронной микроскопии и обратного резерфордовского рассеяния, показали, что с помощью лазерного отжига возможно получение высококачественных кристаллических слоев как на подложках с ориентацией (III), так и с ориентацией (100). Сравнение качества структуры ионнолегированных слоев после термического и лазерного отжигов указывает на более высокое качество слоев, отожженных лазером. Так, после лазерного отжига отсутствуют всякие радиационные дефекты, размеры которых сравнимы с разрешающей способностью электронного микроскопа (10А0). Объяснение данного факта, по-видимому, связано с тем, что граница раздела расплавленный слой - монокристаллический слой может оставаться без зародышеобразования дислокаций в течение времени 50 мс, т.е. намного больше времени существования расплава, которое составляет, как указывалось ранее, 800 нс. Однако использование лазерного отжига, несмотря на его достоинства, приводит к ряду нежелательных явлений. Одним из существенных недостатков является высокая концентрация точных дефектов, дающих глубокие уровни в запрещенной зоне Уже в первых работах, посвященных лазерному отжигу, было отмечено, что механизм отжига в основном носит термический характер и не зависит от степени когерентности используемого излучения. В связи с этим было высказано предположение о возможности отжига ИМС мощными импульсам некогерентного излучения. Действительно, в 1978 г. был проведен отжиг и слоев кремния, имплантированных бором, с использованием световых импульсов некогерентного излучения, полученного путам разряда между двумя вольфрамовыми электродами в объеме, заполненном аргоном или ксеноном. Длительность светового импульса составляла 15 мкс. Сравнение поверхностного сопротивления образцов кремния n-типа, легированных ионами бора (Е = 30 кэВ, D=1015 см-2), отожженных импульсным некогерентным излучением и обычным нагревом (900°С, 60 мин) показало, что сопротивление после термоотжига составляло 160 Ом/ð, а световым импульсом -125 Ом/ð. Полученные результаты убедительно доказывают эффективность импульсного отжига с использованием некогерентных источников света. В настоящее время для импульсного отжига созданы установки, обеспечивающие плотности потока мощности от 20 до 2х106 Вт/см2 и длительности от микросекунд до десятков секунд. Однако следует отметить, что использование коротких длительностей импульса t< 10-2 с требует применения повышенного давления в камере отжига (6х102 – 2х105 Па) для того, чтобы избежать ударной волны, разрушающей образец. Другим существенным недостатком использования таких импульсов является возникновение больших перепадов температуры по толщине образца и, как следствие, генерация структурных дефектов, что недопустимо при создании ИМС. Использование же длительностей импульса t> 10-2 с позволяет получать равномерный нагрев по всему объему в теплоизолированной полупроводниковой пластине, а следовательно, избежать генерации структурных дефектов. Другим преимуществом использования таких импульсов является отсутствие ударной волны. Следует считать, что наиболее приемлемым источником для импульсного отжига, с точки зрения получения импульсов длительностью t> 10-2 с, является использование ксеноновых газоразрядных ламп. Установка с ксеноновой газоразрядной лампой имеет ряд преимуществ перед другими источниками: она более проста по конструкции, имеет высокий к.п.д. (60%) при превращении электрической энергии в световую, обеспечивает высокую воспроизводимость импульсов, отжигает большие площади образцов, не требует создания вакуумной установки. Преимущество импульсного отжига с использованием длительностей импульса 10-2 с проявляется также и на электрофизических параметрах ИМС.Так, использование импульсов длительностью 100 мкс для отжига кремния, легированного ионами BF2, дозой от 1014 до I016 см-2 и энергией от 20 до 180 кэВ показало, что при данной плотности энергии облучения происходит только частичное восстановление решетки, причем степень восстановления падает с увеличением энергии имплантированных ионов (табл. 12.1). Следует отметить, что с увеличением плотности энергии с 7, 68 до 20, 6 Дж/см2 степень рекристаллизации структуры и активация примеси, растет, однако значения поверхностного сопротивления так и не достигают значений, полученных при термическом отжигe (табл. 12.2). При превышении мощности разряда более критической величины возникали поверхностные нарушения, которые, по-видимому, были связаны с большим градиентом температуры по толщине образца. Исследование с помощью электронной микроскопии структурного совершенства слоев кремния, имплантированных ионами фосфора (Е=100 кэВ, D=2х1015 см-2) после отжига световыми импульсами длительностью 0, 8мс также показывает, что на поверхности наблюдаются дефекты, имеющие вид поликремниевых зерен достаточно больших размеров. В тоже время исследование отжига кремниевых пластин, легированных мышьяком (Е=100 кэВ, D=1015 ион/см-2) световыми импульсами длительностью 10-2 с и плотностью световой энергии в пределах 30-85 Дж/см-2 позволило установить, что с увеличением энергии в импульсе слоевое сопротивление монотонно уменьшается и стабилизируется на уровне 90 Ом/ð. Идентичный результат был получен при изотермическом отжиге контрольных образцов в печи при Т=900°С в течение 30 мин. Спектры обратного рассеяния также показали, что уже при W=65 Дж/cм2 выход зондирующих ионов составляет 4, 3%, что мало отличается от значений, характерных для исходного монокристалла, в то время как при использовании импульсов длительностью 0, 8 мс это отличие довольно значительно и составляет 10%. Электрономикроскопические исследования таких образцов подтверждают вывод о полной рекристаллизации имплантированного слоя. При этом было обнаружено, что при плотностях энергии 70 Дж/см2 появляются два вида, дислокационных петель неполные круговые петли Франка размером 20-50 нм с вектором Бюргера 1/3 и стержнеобразные петли, вытянутые в направлении (110). Средняя концентрация этих дефектов составляет 1, 2х1010 и 0, 6х1010 см-2 соответственно. Стержнеобразные дефекты практически исчезают при увеличении плотности энергии в импульсе до 85 Дж/см2, в то время как размеры и концентрация круговых петель практически не изменяется. Подобные результаты получаются и при изотермическом отжиге. Следует отметить, что все исследования по отжигу ИМС проведенные с применением световых импульсов длительностью меньше 10-2 с проводились на образцах размером 1x1 см2, т.к. использование образцов больших размеров приводило к их разрушению. Это указывает на невозможность отжига такими импульсами пластин диаметра 76 мм и выше, используемых в микроэлектронике, а следовательно, и на неперспективность использования для отжига импульсов с длительностью меньшей 10-2 с. Важной особенностью оптического отжига ионнолегированных слоев при длительности импульса 10-5-10-1 с в отличие от лазерного отжига наносекундной длительностью является получение резких профилей, электрически активных примесей, описываемых ЛШШ-теорией, т.е. перераспределение легирующей примеси при таком отжиге отсутствует, что обеспечивает получение мелколежащих р-n-переходов. При этом коэффициент использования примеси близок к единице для доз имплантации от 6х1015 до 1021 м2, а растворимость основных легирующих примесей (B, Р, As, Sb) в кремнии может достигать (1-2)х1025 м-3. Следует отметить, что в отличие от лазерного отжига наносекундной длительностью точечные дефекты в области р-n перехода в заметных концентрациях отсутствуют, а следовательно, это позволяет получать р-n-переходы высокого качества. Таблица 12.1 Зависимость поверхностного сопротивления кремния от энергии имплантации ионов при импульсном отжиге (12, 5 Дж/см2)
Таблица 12.2 Свойства структуры кремния после импульсного и термического отжигов
|