Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Реология идеальных тел





 

 

Рассмотрим простейшие реологические свойства - упругость, пластичность и вязкость трех так называемых идеальных тел. В реологии идеальные тела принято называть именами ученых, которые ввели их впервые [I j: упругое тело называется телом Гука (Нооке, 1635-1703 гг.), пластическое - телом Сен-Венана (St. Venant, 1797-1886 гг.), вязкое - телом Ньютона (I. Newton, 1642-1726 гг.). В качестве моделей идеальных тел обычно используют сталь, пластилин и воду, которые, хотя и обладают всеми реологическими свойствами, как реальные тела, но в большей степени каждому из них присуще одно из свойств: упругость, пластичность или вязкость.

Наиболее ярко различие в реологических свойствах этих тел проявляется при сдвиговых деформациях. Это различие может быть лучше всего выражено математически через так называемые реологические модели (реологические уравнения), устанавливающие связь между касательным напряжением (напряжением сдвига) и деформацией сдвига (градиентом сдвига).

Реологическая модель упругого тела является выражением закона упругой деформации Гука, сформулированного им в 1678 г., согласно которому касательное напряжение (напряжение сдвига), возникающее при сдвиговой деформации тела, пропорционально деформации сдвига (градиенту сдвига):

(1.1)

где - напряжение сдвига, Па;

- модуль сдвиговой упругости, Па.

- градиент сдвига;

 

Реологическая модель пластического тела может быть записана в виде

(1.2.)

 

 

- предел текучести при сдвиге, Па.

 

При малых напряжениях сдвига поведение пластического тела аналогично поведению упругого тела. Однако при достижении некоторого критического значения напряжения сдвига, называемого пределом текучести при сдвиге, пластическое тело потечет. При этом напряжение сдвига будет оставаться приблизительно постоянным, а величина сдвига - безгранично расти.

Реологическая модель вязкого тела является выражением закона вязкого трения Ньютона, сформулированного им в 1687 г., согласно которому касательное напряжение (напряжение сдвига), возникающее между соседними слоями жидкости при ее течении, пропорционально поперечному градиенту скорости (скорости сдвига):

 

(1.3)

 

 

где t - напряжение сдвига, Па;

μ - динамическая вязкость жидкости, Па*с;

- скорость сдвига

 

Материалы, поведение которых описывается реологическим уравнением (1.3), называются ньютоновскими жидкостями. Для ньютоновской жидкости единственным реологическим параметром, то есть параметром, характеризующим ее течение, является динамическая вязкость, определяемая из уравнения (1.3) как отношение напряжения сдвига к скорости сдвига.

График зависимости напряжения сдвига от меры сдвига (графическое представление реологических уравнений) называется реологической линией (реологической кривой или реограммой). Иногда реологическую линию называют еще кривой консистентности. На рис.1 приведены реологические линии для трех идеальных тел. Стрелки на линиях указывают направление, в котором изменяется напряжение сдвига. Как видно из рис.1.1, если для упругого и вязкого тел линия нагрузки совпадает с линией разгрузки, что свидетельствует о полной обратимости реологического поведения этих тел, то реологическая линия пластического тела имеет упругий участок лишь до предела текучести tт, что свидетельствует об обратимости только той части полной деформации, а те деформации, что были накоплены в процессе течения, являются необратимыми (остаточные деформации).


 

 

Рис.1. Реологические линии идеальных тел.

а) упругого; б) пластического; в) вязкого

 

 







Дата добавления: 2014-12-06; просмотров: 2217. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия