Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Аномально-вязкие (неньютоновские) жидкости





Существуют жидкости, кривая течения которых отличается от
представленной на рис. 2. Эти жидкости называются неньютоновски­-
ми. Вязкость неньютоновских жидкостей не остается постоянной при
заданной температуре и давлении и зависит от других факторов таких, как скорость деформации сдвига, конструктивные особенности аппаратуры и предыстории жидкости.

Кривые течения некоторых неньютоновских жидкостей, реологи­ческие характеристики которых не зависят от времени приложения на­грузки, представлены на рис. 3. Такие жидкости называются реостабильными.

Рис. 3. Кривые течения реостабильных

неньютоновских жидкостей:

1 - вязкопластичная; 2 - псевдопластичная;

3 - дилатантная

Кривая течения 1 принадлежит жидкостям, течение которых во­обще не происходит до достижения некоторого критического напря­жения τ о, а при τ > τ о развивается вязкое течение. Реологическое уравне­ние такой жидкости можно представить в виде

 

где τ о - предельное напряжение сдвига;

μ о- бингамовская или пластичная вязкость.

Жидкость, подчиняющуюся реологическому закону (4), называют вязкопластичной жидкостью Швелова-Бингама. Если τ < τ о, она ведет себя как твердое тело, а при τ > τ о - как ньютоновская жидкость. Вязкопластичные свойства проявляют нефти с большим содержанием парафина, глинистые растворы, краски, шламы, сточные грязи.

В табл. 2 приложения приводятся данные по предельному напря­жению сдвига от температуры для некоторых нефтей.

Кривая течения 2 (см. рис. 3) соответствует жидкостям, у которых отношение напряжения сдвига к скорости сдвига τ постоянно по­нижается с ростом скорости сдвига. Кривая течения становится линейной только при больших скоростях сдвига. Реологическую модель та­кой жидкости впервые предложил Оствальд, и математически ее мож­но записать в виде степенного закона

 

где к и b - постоянные для данной жидкости;

к - мера консистенции жидкости;

b - характеризует степень неньютоновского поведения жидкости

Жидкости, подчиняющиеся этому реологическому закону, назы­ваются псевдопластичными. К ним относятся жидкости, содержащие некрупные мехпримеси, суспензии, растворы высокополимеров.

С целью возможности применения имеющихся формул реологии, выведенных для ньютоновских жидкостей (в основном, для воды), для неньютоновских сред вводится понятие кажущейся вязкости - μ или эффективной – μ э. Тогда для неныотоновской жидкости можно запи­сать следующее выражение:

Из сравнения (6) и (5) получим

Из рис. 3 видно, что μ э определяется отношением отрезков ON и

ОМ, следовательно, для каждого значения имеет свое значение.

Эффективная вязкость псевдопластичных жидкостей с увеличением скорости сдвига снижается. Это можно объяснить тем, что при движе­нии перемещение отдельных частиц или молекул становится ориенти­рованным вдоль потока. Эффективная вязкость будет убывать до тех пор, пока сохраняется возможность дальнейшей ориентации частиц вдоль линии тока, а затем кривая становится линейной.

Реологическому закону (5) подчиняется и жидкость, представлен­ная кривой течения 3 на рис. 3, но показатель " Ь" для этих жидкостей превышает

Такой тип течения был впервые обнаружен Рейнольдсом в сус­пензиях с большим содержанием твердой фазы. Для этой жидкости ха­рактерно увеличение эффективной вязкости с увеличением скорости сдвига. Это объясняется тем, что при движении дилатантных жидкостей крупные частицы мехпримесей с увеличением скорости сдвига начинают ударяться друг о друга, а на удар тратится значительная часть энергии.

Для многих жидкостей в широком диапазоне изменения скорости сдвига касательные напряжения хорошо описываются реологической моделью нелинейного вязкопластика



 

 


Данная модель является общим вариантом рассмотренных ранее (см. рис. 3, кривые течения 4, 5). В частном случае, если τ о=0, то имеем реологическое уравнение (5); если К=μ., b=1, то получим модель Шведова-Бингама. При τ о=0, К=μ., b=1 получаем закон Ньютона.

Для многих реальных жидкостей кажущаяся вязкость определяется­
не только скоростью сдвига, но и продолжительностью сдвига. Эти
жидкости называются нереостабильными и в зависимости от характера изменения кривой течения во времени подразделяются на тиксотропные и реопектические.

Тиксотропными называются материалы, консистенция которых зависит от продолжительности сдвига и величины скорости сдвига.

 
 

Если тиксотропный материал, находящийся в состоянии покоя, деформировать с постоянной скоростью сдвига, то его структура будет постепенно разрушаться, а эффективная вязкость и касательные на­пряжения снижаться со

 

Рис. 4. График зависимости от времени

 

временем. На рис. 4 представлен график зави­симости касательных напряже­ний т при постоянном градиенте скорости сдвига от времени t. Линия 1 принадлежит реостабильным жидкостям. Линия 3 - тиксотропным. Тиксотропию проявляют нефти и нефтепро­дукты с большим содержанием парафина, глинистые растворы. Тиксотропия является об­ратимым процессом, после исчезновения возмущения ее касательных напряжений структура постепенно восстанавливается.

Если снимать кривые течения, повторяя опыты друг за другом, то для тиксотропной жидкости будет наблюдаться изменение кривой течения от опыта к опыту (рис. 5).

Рис. 5. Кривые течения тиксотропных жидкостей

Если снять кривую течения тиксотропной жидкости сначала для равномерного возрастания градиента скорости сдвига, а затем с рав­номерным убыванием, то получим кривую течения, представленную на рис. 6 в виде гистерезисной петли.

Рис. 6. Гистерезисные петли тиксотропной жидкости:

1 - с ненарушенной или частично разрушенной структурой;

2 - с полностью разрушенной структурой

Если с увеличением времени при фиксированной скорости сдвига касательные напряжения увеличиваются, жидкость называется реопектической (см. кривую 2, рис. 4). Реопексию проявляет, например, 40 % -ный раствор гипса. По-видимому, при малых скоростях сдвига более бла­гоприятные условия образования структуры (но и термический эф­фект).







Дата добавления: 2014-12-06; просмотров: 1726. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия