Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Лабораторная работа 14. Задача о максимальном потоке в сети





Рассмотрим пример. На графе G, приведенном на рис.6.1. найти максимальный поток, который может быть пропущен из вершины 1 в вершину 9 и разрез с минимальной пропускной способностью, в качестве пропускных способностей d(v) возьмем значения из таблицы 1.

2 8

 

           
   
 
   
 
 

 

 


1 4 7

               
   
   
     
 
 
 
 

 

 


5

       
 
   
 

 


3 6 9

Рис.6.1.

Таблица 1

 

d12 d14 d13 d28 d27 d24 d34 d35 d36 d47 d45 d57 d56 d59 d69 d78 d79 d89
                                   

Решение.

Потоки по всем дугам полагаем равными нулю, т.е.

X12=0; X14=0; X13=0; X28=0; X27=0; X24=0;

X34=0; X35=0; X36=0; X47=0, X45=0; X57=0;

X59=0; X56=0; X69=0; X78=0; X79=0; X89=0;

 

Отыскание увеличивающего пути.

 

Помечаем вершину 1 пометками q(1)=1000, v(1)= -. Все остальные вершины не помечены, для них q(i)=0, v(i)= -.

Номер вершины i q(i) v(i)

1: 1000 -

 

Из вершины 1 помечаем вершины 2, 3, 4. Покажем как это делается на примере вершины 2. Поток, поступивший в вершину 1 равен 1000, по дуге (1, 2) d12=1, X12=0, поэтому дополнительный поток, который может поступить в вершину 2 q(2)=min(q(1), d12- X12)=min(1000, 1-0)=1. Вершина 2 помечается по прямой дуге (1, 2), поэтому v(i)=(1, 2). После аналогичной пометки вершин 3, 4 получаем

Номер вершины i q(i) v(i)

1: 1000 -

2: 1 (1, 2)

3: 1 (1, 3)

4: 2 (1, 4)

 

Затемнена просмотренная вершина, все остальные вершины не просмотрены.

Из вершины 2 помечаем вершины 7 и 8

 

Номер вершины i q(i) v(i)

1: 1000 -

2: 1 (1, 2)

3: 1 (1, 3)

4: 2 (1, 4)

7: 2 (4, 7)

8: 1 (2, 8)

Далее из вершины 3 помечаем 5 и 6

 

 

Номер вершины i q(i) v(i)

1: 1000 -

2: 1 (1, 2)

3: 1 (1, 3)

4: 2 (1, 4)

7: 2 (4, 7)

8: 1 (2, 8)

5: 1 (3, 5)

6: 1 (3, 6)

 

Аналогично вершина 4.

После просмотра вершины 7 становится помеченной вершина 9

 

 

Номер вершины i q(i) v(i)

1: 1000 -

2: 1 (1, 2)

3: 1 (1, 3)

4: 2 (1, 4)

7: 2 (4, 7)

8: 1 (2, 8)

5: 1 (3, 5)

6: 1 (3, 6)

9: 2 (7, 9)

 

Эта вершина является стоком, в нее пришел дополнительный поток q(9)=2. Восстанавливаем путь по которому пришел этот поток, используя значения v(i). Этот путь выглядит следующим образом

1, (1, 4), 4, (4, 7), 7, (7, 9), 9

По дугам этого пути увеличиваем потоки на величину q(9)=2. В результате получаем

 

X12=0; X14=2; X13=0; X28=0; X27=0; X24=0;

X34=0; X35=0; X36=0; X47=2, X45=0; X57=0;

X59=0; X56=0; X69=0; X78=0; X79=2; X89=0;

 

После аналогичного отыскания увеличивающих путей дважды получим

 

X12=1; X14=2; X13=1; X28=0; X27=0; X24=1;

X34=1; X35=0; X36=0; X47=3, X45=1; X57=0;

X59=0; X56=1; X69=1; X78=0; X79=3; X89=0;

 

Начинаем заново поиск увеличивающего пути из вершины t.

Помечаем вершину 1 пометками q(1)=1000, v(1)= -. Все остальные вершины не помечены, для них q(i)=0, v(i)= -.

 

Из вершины 1 невозможно пометить по выходящим из нее дугам ни одной вершины

Номер вершины i q(i) v(i)

1: 1000 -

 

Все помеченные вершины просмотрены, поэтому максимальный поток найден.

Его величина равна Q=X69+X79+X89=4. Разрез с минимальной пропускной способностью V(E1, E2)={(1, 2), (1, 3), (1, 4)} изображен на рис.1 двойной линией, Е1={1}, E2={2, 3, 4, 5, 6, 7, 8, 9}.

 







Дата добавления: 2014-12-06; просмотров: 647. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Приложение Г: Особенности заполнение справки формы ву-45   После выполнения полного опробования тормозов, а так же после сокращенного, если предварительно на станции было произведено полное опробование тормозов состава от стационарной установки с автоматической регистрацией параметров или без...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия