Студопедия — Задание 9. Решить задачу, добавив условие целочисленности переменных
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задание 9. Решить задачу, добавив условие целочисленности переменных






Решить задачу, добавив условие целочисленности переменных. Если при решении задачи (4.2) решение оказалось целочисленным, то задание скорректировать у преподавателя.

Вариант З а д а н и е Вариант З а д а н и е
1 -3 x1 - 2 x2 - x3 --> min x1 + x2 + 2x3 = 1 x1 - x2 + x3 = 1 x i ≥ 0, i=1, 2, 3 16 x1 - x2 + 4 x3 --> max x1 + 2x2 - 3 x3 =3 2 x1 - x2 + 4 x3 = 1 x i ≥ 0, i=1, 2, 3
2 2 x1 +3 x2 +5 x3 --> max x1 + x2 + x3 ≤ 1 x1 - x2 + x3 = 1 x i ≥ 0, i=1, 2, 3 17 - x1 + 4 x2 - x3 --> max x1 + 2 x2 + x3 =3 2x1 + x2 - x3 = 0 x i ≥ 0, i=1, 2, 3
3 x1 - 4 x2 +5 x3 --> max 2x1 + x2 +2 x3 = 4 x1 - x2 - x3 ≤ 2 x i ≥ 0, i=1, 2, 3 18 x1 - 2 x2 - 4 x3 --> min x1 - x2 - 2 x3 ≥ 1 x1 + x2 + x3 ≤ 3 x i ≥ 0, i=1, 2, 3
4 x1 - 4 x2 +5 x3 --> max 2x1 + x2 + x3 ≤ 4 x1 - x2 - x3 = 2 x i ≥ 0, i=1, 2, 3 19 4x1 + x2 + 5x3 --> max x2 + x3 ≤ 2 3x1 + 2 x2 - x3 ≤ 1 x i ≥ 0, i=1, 2, 3
5 - x1 + 4 x2 - 5x3 --> min 2x1 + x2 + x3 ≤ 4 x1 - x2 - x3 ≥ 2 x i ≥ 0, i=1, 2, 3 20 x1 + x2 + x3 --> max x1 - x2 + x3 =1 3x1 + 2 x2 +2 x3 =17 x i ≥ 0, i=1, 3
6 3x1 - 2 x2 - 2x3 -3x4--> max x1 - x2 + x3 + x4 = 1 x1 - x2 - x3 - x4 =1 x i ≥ 0, i=1, 2, 3 21 x1 + 4 x2 - 7 x3 --> max 2 x1 - 2 x2 + 14 x3 ≥ 2 x1 - 2 x2 + 10 x3 = 0 x i ≥ 0, i=1, 2, 3
7 x1 + x2 + x3 --> min x1 + x2 +x3 ≥ 1 x1 - x2 + x3 ≤ 1 x i ≥ 0, i=1, 2, 3 22 8 x1 + 2 x2 - 3 x3 --> max x1 + x2 + x3 = 5 3 x1 + x2 - x3 = - 3 x i ≥ 0, i=1, 2, 3
8 x1 - x2 - x3 --> max 10 x1 + x3 ≤ 10 10x2 + x3 ≥ 10 x i ≥ 0, i=1, 2, 3 23 3 x1 + 2 x2 + 10 x3 --> min x1 +10 x2 + 11 x3 =31 x1 - x2 = - 2 x i ≥ 0, i=1, 2, 3
9 x1 + x2 + 2 x3 --> min 10 x1 + x3 ≥ 10 10x2 + x3 ≤ 10 x i ≥ 10, i=1, 2, 3 24 2 x1 + x2 + x3 + x4 --> max x1 - x2 + x3 - x4 ≤ 2 x1 + x3 - x4 ≥ 1 x i ≥ 0, i=1, 2, 3, 4
10 -x1 - x2 -2 x3 --> max 10 x1 + x3 ≥ 1 10x2 + x3 ≤ 1 x i ≥ 0, i=1, 2, 3 25 2 x1 + x2 + x3 + 2x4--> max - x1 - x2 + 4 x3 + x4 = 2 x1 - x2 - 2 x3 ≤ 2 x i ≥ 0, i=1, 2, 3, 4
11 x1 + x2 + x3 + x4 --> max x1 + x2 +3x3 + 4x4 = 12 x1 - x2 + x3 - x4 =2 x i ≥ 0, i=1, 2, 3, 4 26 x1 + x2 +2 x4 --> max x1 + x3 + x4 =4 x1 - 2 x2 - 3x3 + x4 = 0 x i ≥ 0, i=1, 2, 3, 4
12 x1 +2x2 - x3 - x4 -x5 --> min x1 + x2 +2x3 -x4 ≤ 2 x1+ x2 + 3x3 + 4x4 = 12 x i ≥ 0, i=1, 2, 3, 4, 5 27 x1 - x2 + x3 + 2 x4 --> max x1 + x2 + x3 + 2x4 = 7 x2+ x3 + x4 = 5 x i ≥ 0, i=1, 2, 3, 4
13 x3 + x4 --> max x1 + x2 + 3x3 + 4x4 = 12 x1 + x2 + x3 - x42 x i ≥ 0, i=1, 2, 3, 4 28 - x1 - x2 - x3 -5x4 --> min x1 - x2 - x4 £ 3 2 x1 + x2 + x3 -x4 = 5 x i ≥ 0, i=1, 2, 3, 4
14 -x1 - x2 + x3 --> min x1 + x2 +x3 + x4 = 4 x1 - 3x2 +x3 - x4 = - 2 x i ≥ 0, i=1, 2, 3, 4 29 x1 + x2 - x3 --> max x1 + x3 =2 x1 + 0, 5 x2 - x3 = 0 x i ≥ 0, i=1, 2, 3
15 -x1 +2 x2 - x3 --> max x1 - x2 + 2x3 ≤ 0 x1 + x2 +5x3 ≥ 2 x i ≥ 0, i=1, 2, 3 30 x1 + x2 + x3 --> max 2 x1 + x2 + x3=3 x1 +2x2 - x3 = 3 2 x1 + x2 + x3 -x4 = 5 x i ≥ 0, i=1, 2, 3, 4

 

Лабораторная работа 10. Задача оптимизации многошаговых процессов, задача о ранце.

Задача оптимизации многошаговых процессов имеет вид

S {f°i(x(i-1), u(i))| iÎ [1..n]}® max (4.19)

при ограничениях

x(0)=a(0), (4.20)

x(i)=f i(x(i-1), u(i)), i Î [1..n], (4.21)

x(i) Î X(i), i Î [1..n], (4.22)

u(i) Î U(i), i Î [1..n], (4.23)

где X(i), U(i), iÎ [1..n], - конечные множества.

Положим X(0)={ a(0)}. Для этой задачи справедливо следующее функциональное

соотношение Беллмана:

Wn(x)=0, x Î X(n),

W i(x)=max{f° i(x, u)+W i((f i(x, u)) | u Î U i(x)}, (4. 24)

x Î X(i), i Î [0..n-1],

где U i(x)= {u Î U(i) | f i(x, u) Î X(i+1) }.

Для того, чтобы решение x (i), i Î [0..n], u (i), i Î [1..n], удовлетворяющее ограничениям (4.20 – 4.23) было оптимальным, необходимо и достаточно, чтобы

i(x (i), u (i+1))+W i(f i(x (i), u (i+1))) = max{f° i(x (i), u)+

W i(f i(x (i), u)) | u Î U i(x (i))}.

Исходя из сказанного выше, получаем следующий алгоритм решения задачи (1-5):

 

Алгоритм.

 

Первый этап.

for xÎ X(n) do Wn(x): =0;

for i: =n-1 downto 0 do

for xÎ X(i) do

begin

W i(x)=max{f° i(x, u)+W i(f i(x, u)) | uÎ U i(x)};

u i(x): =argmax{f°i(x, u)+W i(fi(x, u))| uÎ U i(x)}

end;

Второй этап.

x (0): = a(0);

for i: =1 to n do

begin

u (i): =u i(x (i-1));

x (i): =f i(x (i-1), u (i))

end;

Полученное в результате работы алгоритма решение x (i), u (i) iÎ [1..n], будет оптимальным для задачи (4.19– 4.23) Оптимальное значение функционала будет равно W0(a(0)).

Задача о ранце имеет вид

S { c(i)´ u(i)| iÎ [1..n]} -® max (4. 25)

при ограничениях

S { a(i) ´ u(i)| iÎ [1..n]} £ b (4. 26)

где u(i)- целые числа, a(i) также рассматриваем целыми, i Î [1..n].

Введем переменные x(0)=0, x(i)= S { a(k) ´ u(k): k Î [1..i]}. Из задачи (4.25) - (4.26) получим эквивалентную задачу (4.27) - (4. 31):

S { c(i) ´ u(i)| iÎ [1..n]} -® max, (4.27)

x(0) = 0, (4.28)

x(i)=x(i-1)+a(i) ´ u(i), iÎ [1..n], (4.29)

x(i) Î X(i)={0, 1, 2,..., b}, iÎ [1..n], (4.30)

u(i) Î U(i)={0, 1, 2,..., b}, iÎ [1..n]. (4.31)

Задача (4.27) - (4. 31) имеет такой же вид, как и задача (4.19– 4.23), поэтому для решения задачи (4.27) - (4. 31) возможно применение алгоритма, описанного выше.

 







Дата добавления: 2014-12-06; просмотров: 581. Нарушение авторских прав; Мы поможем в написании вашей работы!



Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия