Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Лекция 7. Матричные преобразования систем координат





Преобразования, связанные с системой координат

Необходимо научиться управлять изображением на экране, вносить изменения в его положение, форму, ориентацию, размер. Для этих целей существуют специальные геометрические преобразования, которые позволяют изменять эти характеристики объектов в пространстве. Представим задачу создания компьютерного имитатора полетов на военном самолете. Объекты на земле, как и сам самолет, изменяют свое положение: вращается антенна локатора, движется танк. При этом, наблюдатель видит эту картину из определенной точки в пространстве в выбранном направлении. Необходимо описать эти сложные преобразования математически.

Введем три вида систем координат. Первая из них – мировая система координат – задается осями . Мы размещаем ее в некоторой точке, и она остается неподвижной всегда. Вторая – система координат наблюдателя. Эту систему назовем . Она определяет положение наблюдателя в пространстве и задает направление взгляда. И третья – система координат объекта. В нашем случае их две: система координат локатора и система координат танка. Эти системы также могут перемещаться и изменять свое положение в пространстве относительно мировой системы координат. Координаты точек объектов задаются в системах координат объектов, каждая из которых, в свою очередь, привязана к мировой системе координат. Система координат наблюдателя также перемещается относительно мировой системы координат. Теперь становится понятно, что для того, чтобы увидеть трехмерный объект на экране компьютера надо проделать следующие шаги.

1. Преобразовать координаты объекта, заданные в собственной системе координат, в мировые координаты.

2. Преобразовать координаты объекта, заданные уже в мировой системе координат, в систему координат наблюдателя.

3. Спроецировать полученные координаты на проекционную плоскость в системе координат наблюдателя.

Отметим, определенную двойственность впечатлений, возникающих при взаимных перемещениях систем координат друг относительно друга. Представим себе, что мы наблюдаем кубик в пространстве. Пусть теперь этот кубик начнет вращаться вокруг, например, вертикальной оси. Мы увидим, что кубик вращается. Но тот же самый эффект мы получим, если сами начнем облетать вокруг кубика и рассматривать его с разных сторон. Визуальный эффект остается тем же самым, хотя в первом случае наша система координат остается неподвижной, а во втором – вращается по орбите. Этот эффект можно использовать при выводе формул движения в пространстве.







Дата добавления: 2014-12-06; просмотров: 728. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия