Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Двумерные матричные преобразования





Рассмотрим преобразования координат точек на плоскости. На рис. 1 точка перенесена в точку .

 

Рис. 1. Операция переноса или трансляции точки в точку .

 

Математически этот перенос можно описать с помощью вектора переноса . Пусть радиус вектор, соответствующий вектору переноса . Тогда переход из точки в точку будет соответствовать векторной записи . Отсюда получаем, что для переноса точки в новое положение необходимо добавить к ее координатам некоторые числа, которые представляют собой координаты вектора переноса:

Масштабированием объектов называется растяжение объектов вдоль соответствующих осей координат относительно начала координат. Эта операция применяется к каждой точке объекта, поэтому можно также говорить о масштабировании точки. При этом, конечно, речь не идет об изменении размеров самой точки. Масштабирование достигается умножением координат точек на некоторые константы. В том случае, когда эти константы равны между собой, масштабирование называется однородным. На рис.2 приведен пример однородного масштабирования треугольника .

Рис. 2. Операция масштабирования.

 

После применения операции однородного масштабирования с коэффициентом 2 он переходит в треугольник . Обозначим матрицу масштабирования . Для точек и операция масштабирования в матричном виде будет выглядеть следующим образом:

.

Рассмотрим далее операцию вращения точки на некоторый угол относительно начала координат. На рисунке 3 точка переходит в точку поворотом на угол .

Рис. 3. Операция поворота точки на угол .

 

Найдем преобразование координат точки А в точку В. Обозначим угол, который составляет радиус-вектор с осью О x. Пусть r – длина радиус-вектора , тогда

Так как и , то подставляя эти выражения в уравнения для и , получаем:

В матричном виде вращение точки А на угол выглядит следующим образом:

 







Дата добавления: 2014-12-06; просмотров: 848. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Что происходит при встрече с близнецовым пламенем   Если встреча с родственной душой может произойти достаточно спокойно – то встреча с близнецовым пламенем всегда подобна вспышке...

Реостаты и резисторы силовой цепи. Реостаты и резисторы силовой цепи. Резисторы и реостаты предназначены для ограничения тока в электрических цепях. В зависимости от назначения различают пусковые...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия