Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Введение. В последнее время в широких кругах пользователей вычислительных машин различного класса стал достаточно популярным и широко используемым термин «компьютерная





В последнее время в широких кругах пользователей вычислительных машин различного класса стал достаточно популярным и широко используемым термин «компьютерная математика».

Компьютерная, символьная математика либо компьютерная алгебра — большой раздел математического моделирования. В принципе, программы такого рода можно отнести к инженерным программам автоматизированного проектирования. Таким образом, в области инженерного проектирования выделяют три основных раздела:

CAD — Computer Aided Design (автоматизированное проектирование);

CAM — Computer Aided Manufacturing (автоматизированное производство);

CAE — Computer Aided Engeneering (автоматизированное конструирование, автоматизированная разработка).

Сегодня серьезное конструирование, градостроительство и архитектура, электротехника и масса смежных с ними отраслей, а также учебные заведения технической направленности уже не могут обойтись без систем автоматизированного проектирования (САПР), производства и расчетов. А математические пакеты являются составной частью мира CAE-систем, но эта часть никак не может считаться второстепенной, поскольку некоторые задачи вообще невозможно решить без помощи компьютера. Более того, к системам символьной математики сегодня прибегают даже теоретики (так называемые чистые, а не прикладные математики), например для проверки своих гипотез.

Времена, когда программы математического моделирования требовали от пользователей умения программировать на тех или иных алгоритмических языках, отлаживать программы, отлавливать ошибки и тратить массу времени на получение результата, прошли. Сегодня в математических пакетах применяется принцип конструирования модели, а не традиционное «искусство программирования». То есть пользователь лишь ставит задачу, а методы и алгоритмы решения система находит сама. Более того, такие рутинные операции, как раскрывание скобок, преобразование выражений, нахождение корней уравнений, производных и неопределенных интегралов компьютер самостоятельно осуществляет в символьном виде, причем практически без вмешательства пользователя.

Современные математические пакеты можно использовать и как обычный калькулятор, и как средства для упрощения выражений при решении каких-либо задач, и как генератор графики или даже звука. Стандартными стали также средства взаимодействия с Интернетом, и генерация HTML-страниц выполняется теперь прямо в процессе вычислений. Теперь можно решать задачу и одновременно публиковать для коллег ход ее решения на своей домашней странице.

В настоящее время практически все современные CAE-программы имеют встроенные функции символьных вычислений. Однако наиболее известными и приспособленными для математических символьных вычислений считаются Maple, MathCad, Mathematica и MatLab. Кроме основных программ символьной математики существуют альтернативы, идеологически схожие с тем или иным пакетом-лидером.

Так что же делают эти программы и как они помогают математикам? Основу курса математического анализа в высшей школе составляют такие понятия, как пределы, производные, первообразные функций, интегралы разных видов, ряды и дифференциальные уравнения. Тому, кто знаком с основами высшей математики, наверняка, известны десятки правил нахождения пределов, взятия интегралов, нахождения производных и т.д. Если добавить к этому то, что для нахождения большинства интегралов нужно также помнить таблицу основных интегралов, то получается поистине огромный объем информации. И если какое-то время не тренироваться в решении подобных задач, то многое быстро забывается и для нахождения, например, интеграла посложнее придется уже заглядывать в справочники. Но ведь взятие интегралов и нахождение пределов в реальной работе не является главной целью вычислений. Реальная цель заключается в решении каких-либо проблем, а вычисления — всего лишь промежуточный этап на пути к этому решению.

С помощью описываемого ПО можно сэкономить массу времени и избежать многих ошибок при вычислениях. Естественно, CAE системы не ограничиваются только этими возможностями, но в данном обзоре мы сделаем упор именно на них.

Отметим только, что спектр задач, решаемых подобными системами, очень широк:

· проведение математических исследований, требующих вычислений и аналитических выкладок;

· разработка и анализ алгоритмов;

· математическое моделирование и компьютерный эксперимент;

· анализ и обработка данных;

· визуализация, научная и инженерная графика;

· разработка графических и расчетных приложений.

При этом отметим, что поскольку CAE-системы содержат операторы для базовых вычислений, то почти все алгоритмы, отсутствующие в стандартных функциях, можно реализовать посредством написания собственной программы. Таким образом, можно сделать вывод, что рассматриваемые универсальные математические пакеты – весьма совершенные, гибкие и одновременно универсальные продукты, включающие существенные математические понятия и обладающие богатым набором методов для решения общих математических и научно-технических задач. Именно обзору и краткому анализу таких программных продуктов и посвящена данная работа.







Дата добавления: 2014-12-06; просмотров: 551. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия