Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вычисления в Maple





Систему Maple можно использовать и на самом элементарном уровне ее возможностей — как очень мощный калькулятор для вычислений по заданным формулам, но главным ее достоинством является способность выполнять арифметические действия в символьном виде, то есть так, как это делает человек. При работе с дробями и корнями программа не приводит их в процессе вычислений к десятичному виду, а производит необходимые сокращения и преобразования в столбик, что позволяет избежать ошибок при округлении. Для работы с десятичными эквивалентами в системе Maple имеется специальная команда, аппроксимирующая значение выражения в формате чисел с плавающей запятой. Система Maple вычисляет конечные и бесконечные суммы и произведения, выполняет вычислительные операции с комплексными числами, легко приводит комплексное число к числу в полярных координатах, вычисляет числовые значения элементарных функций, а также знает много специальных функций и математических констант (таких, например, как «е» и «пи»). Maple поддерживает сотни специальных функций и чисел, встречающихся во многих областях математики, науки и техники. Приведем лишь некоторые из них:

· функция ошибок;

· эйлерова константа;

· экспоненциальный интеграл;

· эллиптическая интегральная функция;

· гамма-функция;

· зета-функция;

· ступенчатая функция Хевисайда;

· дельта-функция Дирака;

· бесселева и модифицированная бесселева функции.

Рисунок 2.1 – Интерфейс Maple

 

Система Maple предлагает различные способы представления, сокращения и преобразования выражений, например такие операции, как упрощение и разложение на множители алгебраических выражений и приведение их к различному виду. Таким образом, Maple можно использовать для решения уравнений и систем.

Maple также имеет множество мощных инструментальных средств для вычисления выражений с одной или несколькими переменными. Программу можно использовать для решения задач дифференциального и интегрального исчисления, вычисления пределов, разложений в ряды, суммирования рядов, умножения, интегральных преобразований (таких как преобразование Лапласа, Z-преобразование, преобразование Меллина или Фурье), а также для исследования непрерывных или кусочно-непрерывных функций.

Maple может вычислять пределы функций, как конечные, так и стремящиеся к бесконечности, а также распознает неопределенности в пределах. В этой системе можно решать множество обычных дифференциальных уравнений (ODE), а также дифференциальные уравнения в частных производных (PDE), в том числе задачи с начальными условиями (IVP) и задачи с граничными условиями (BVP).

Одним из наиболее часто используемых в системе Maple пакетов программ является пакет линейной алгебры, содержащий мощный набор команд для работы с векторами и матрицами. Maple может находить собственные значения и собственные векторы операторов, вычислять криволинейные координаты, находить матричные нормы и вычислять множество различных типов разложения матриц.

Для технических применений в Maple включены справочники физических констант и единицы физических величин с автоматическим пересчетом формул. Особенно эффективна Maple при обучении математике. Высочайший интеллект этой системы символьной математики сочетается с прекрасными средствами математического численного моделирования и с просто потрясающими возможностями графической визуализации решений. Такие системы, как Maple, можно применять как в преподавании, так и для самообразования при изучении математики от самых азов до вершин.







Дата добавления: 2014-12-06; просмотров: 665. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

Studopedia.info - Студопедия - 2014-2026 год . (0.008 сек.) русская версия | украинская версия