Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Нахождение всех возможных тупиковых форм





 

Не находя существенных импликант, обозначим все простые импликанты латинскими буквами. Исходная функция может быть записана в виде дизъюнкции простых импликант, что соответствует сокращенной форме (которая является единственной). Эта форма является также тупиковой. Для отыскания всего множества тупиковых форм запишем тождественную логическую формулу:

 

где - простые импликанты, соответствующие меткам -го столбца, - количество меток в -м столбце, - количество столбцов в таблице меток. Формула дает полную совершенную нормальную дизъюнктивную форму функции, т.е. .

Если в формуле встретятся члены и , то член можно не писать, ибо (вот почему на 3 этапе метода Квайна выброшены большие столбцы).

Выражение необходимо упростить (раскрыть скобки и применить законы алгебры логики). Получим дизъюнкцию членов, каждый из которых дает множество простых импликант, входящих в тупиковую форму. Составим таблицу.

 

№№ Тупиковые формы Общее число букв в тупиковой форме Число членов в тупиковой форме
1.      
2.      
3.      
.      
.      

 

Тупиковые формы с наименьшим числом букв и есть минимальные формы, тупиковые формы с наименьшим числом членов есть кратчайшие формы. Чаще всего минимальная форма не совпадает с кратчайшей.

Рассмотрим на примере 5 этот метод (см. таблицу этапа 2 в методе Квайна). Начертим ее здесь. Обозначив первичные импликанты латинскими буквами a, b, c, d, e, f, а столбцы цифрами (1), (2), …, (8).

 

         
  (1) (2) (3) (4) (5) (6) (7) (8)
a V     V        
b V         V    
c     V V        
d         V V    
e         V     V
f   V V       V V

 

Составим функцию .

 

 

Дизъюнкция включается для реализации меток 1-го столбца и т.д. По закону поглощения , поэтому члены 3 и 8 можно не записывать. Упростим .

 
 


       
   


Раскроем скобки

 

Каждый из членов дает тупиковую форму данной функции. Составим таблицу.

 

№№ Тупиковые формы Общее число букв в тупиковой форме Число членов в тупиковой форме
1. 3+3+2=8  
2. 3+3+3+2=11  
3. 3+3+3+2=11  
4. 3+3+3+2=11  

 

Из таблицы следует, что 1-е решение есть минимальная форма (сравните результат), оно же дает кратчайшую форму. Отметим еще раз, что кратчайшая и минимальные формы могут не совпадать.

Итак, есть минимальная форма данной функции.

Замечание 3. Таблица покрытий может не содержать существенных импликаций. Поясним, как в этом случае поступить. Пусть таблица меток имеет вид: (см. ниже).

Исключим 2 и 7 столбцы, т.к. 3 и 5 являются их частями, а из оставшихся столбцов выбираем столбец с наименьшим числом меток. Здесь во всех столбцах их по 2, поэтому возьмем 1-й столбец. Примем за псевдосущественную импликанту , а затем .

 

 

    2         7
a v v v       v
b   v v v   v  
c   v   v v   v
d v       v v v

Рассмотрим 2 частных случая:

       
   


          1)   1         2)            
a v v         a v v         a v v      
b   v v   v   b   v v   v   b   v v   v
c     v v     c     v v     c     v v  
d v     v v   d v     v v   d v     v v

 

Исключим большие столбцы, содержащие в себе выбранные псевдостолбцы. Запишем множество тупиковых форм для каждой таблицы. Это можно сделать по методу Патрика, но здесь можно перебрать все возможные варианты по таблице

1): (1) 2): (4)
  (2)   (5)
  (3)      

 

Рассмотрим совместно множества решений. Решение (2) входит в (5), (3) совпадает с (4), а (1) нет соответствующего во 2-й таблице, наиболее простая тупиковая форма (5). Таким образом, разбиение на подтаблицы упрощает отыскание тупиковых форм.

 







Дата добавления: 2014-10-22; просмотров: 556. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Гносеологический оптимизм, скептицизм, агностицизм.разновидности агностицизма Позицию Агностицизм защищает и критический реализм. Один из главных представителей этого направления...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия