Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Приложение. .





Приложение.

Контрольная работа по теме: Тригонометрические функции. 10 класс.

Вариант 1.

1. Найдите значение выражения:

1) ; 2) ; 3) ; 4) 0.

2. Сравните с нулём выражения: sin 1200, cos 1950, ctg 3590.

Выберите правильную серию ответов:

1) + – – 2) – – + 3) + + – 4) + – +

3. Вычислите:

1) 12; 2) ; 3) 6; 4) 0.

4. Упростите выражение:

1) – cos2a; 2) cos2a; 3) sin2a; 4) – sin2a.

5. Упростите выражение: sina * cos a * ctg a – 1

1) 0; 2) cos2a; 3) – sin2a; 4) sin2a.

6. Упростите выражение:

1) sin a – cos a; 2) –2 ctg 2a; 3) tg 2a; 4) 0, 5 ctg 2a.

7. Вычислите: 2sin 150 * cos 150

1) ; 2) ; 3) ; 4) .

8. Вычислите: cos

1) ; 2) ; 3) ; 4) 0.

9. Представив 1050 как 600 + 450, вычислите sin 1050.

1) ; 2) ; 3) ; 4) .

10. Дано: sin a = – где . Найдите tg 2a

1) ; 2) ; 3) ; 4) .

 

 

Контрольная работа по теме: Тригонометрические функции. 10 класс.

Вариант 2.

  1. Найдите значение выражения:
1) 2, 5; 2) 0, 5; 3) ; 4) 1, 5.

  1. Сравните с нулём выражения: sin 1870, cos 2150, tg 800.
Выберите правильную серию ответов:

1) + – + 2) – + + 3) – – + 4) – + –

  1. Вычислите:
1) ; 2) - ; 3) - ; 4) .

  1. Упростите выражение:
1) tg2a; 2) -tg2a; 3) -ctg2a; 4) ctg2a.

  1. Упростите выражение:
1) – sin a; 2) sin a; 3) – 2cos a; 4) sin a – 2cos a.

  1. Упростите выражение:
1) ctg2a; 2) tg2a; 3) – tg2a; 4) – ctg2a.

  1. Вычислите: 1) ; 2) ; 3) ; 4) 0.
  2. Вычислите: cos 1500 1) ; 2) ; 3) ; 4) .
  3. Представив 150 как 450 – 300, вычислите cos 150.
1) ; 2) ; 3) ; 4) .

  1. Дано: cos a = – где . Найдите ctg 2a
1) ; 2) ; 3) ; 4) .

 

 


Контрольная работа по теме: Свойства функции. 10 класс.

Вариант

1. Найдите область определения функции

1) 2) 3) 4) .

2. Найдите область значений функции у = cos x +2

1) [-1; 1]; 2) [-2; 2]; 3) [0; 2]; 4) [1; 3].

3. Проверьте функцию на четность у = х4+ cos x

1) четная; 2) нечетная; 3) ни четная, ни нечетная; 4) периодическая.

4. Найдите нули функции

1) 0; 2) 1; 3) 0; 1; 4) нет.

5. По графику некоторой функции у= f (x) найдите промежутки возрастания

 

 

1) [-3; -2] U [2; 5]; 2) [-3; 5]; 3) [-2; 2]; 4) [2; 5].

6. Найдите наименьший положительный период функции

1) π; 2) 2 π; 3) 0, 5 π; 4) 4 π.

7. Найдите наименьшее значение функции у = х2 + 3х – 1

1) -1; 2) -3, 25; 3) -1, 5; 4) 1, 25.

8. Укажите график функции у = (х-1)2+4

 

1) 2) 3) 4)

9. Найдите промежутки, на которых у> 0

 

1) (-2; 2); 2) [-2; 0)U(2; 4); 3) [-2; -1) U (2; 4]; 4) [0; 3].

 

 

10. Дана функция f (x)= x3-2ax + 8. Известно, что f (1) = 5. Найдите f (-2).

1) 16; 2) 0; 3) 8; 4) -8.

11. Укажите функцию, которой соответствует данный график

1) ; 2) ; 3) ; 4) .

 


Контрольная работа по теме: Свойства функции. 10 класс.

Вариант

1. Найдите область определения функции и

1) 2) 3) 4) .

2. Найдите область значений функции у = sin x -2

1) [-1: 1]; 2) [-3: -1]; 3) (-2; 0); 4) [-2; 2].

3. Проверьте функцию на четность:

1) четная; 2) нечетная; 3) ни четная, ни нечетная; 4) убывающая.

4. Найдите нули функции

1) 3; 2) -3; 3) 0; 4) -5.

5. По графику некоторой функции

у= f (x) найдите промежутки возрастания

 

1) [-2; 3]U [2; 4]; 2) [-3; 5]; 3) [0; 3]; 4) (-1; 2).

 

6. Найдите наименьший положительный период функции у = tg 4x

1) 2π; 2) ; 3) 0, 5 π; 4) 4 π.

7. Найдите наименьшее значение функции у = -х2 + 5х – 9

1) ; 2) -9; 3) 1, 5; 4) 9, 75.

8. Укажите график функции у = -2x-3

1) 2) 3) 4)

 

9. Найдите промежутки, на которых у< 0

1) (-1; 3); 2) [-3; 1]U[4; 5];

 

3) (-3; -1); 4) [1; 4].

 

 

10. Дана функция f (x)= x3+5x -a. Известно, что f (2) = 15. Найдите f (-1).

1) -3; 2) -9; 3) -8; 4) 0.

11. Укажите функцию, которой соответствует данный график

1) ; 2) ;

3) ; 4) .

 

Контрольная работа по теме: Тригонометрические уравнения и неравенства. 10 класс.

Вариант

1. Вычислите: arcsin () + 2arctg(-1)

1) ; 2) ; 3) ; 4) .

2. Вычислите: arcos () + 2arcctg()

1) ; 2) ; 3) ; 4) .

3. Решите уравнение: sin x - =0

1) 2) ; 3) 4)

4. Решите уравнение: cos 2x=1

1) 2) 3) 4)

5. Укажите уравнение, которому соответствует решение: :

1) tg x = 1; 2) cos x = 0; 3) sin x = -1; 4) ctg x = .

6. На каком из рисунков показано решение неравенства: cos x < ?

1) 2) 3) 4)

 

 


7. Решите неравенство: tg x ≥ :

1) 2) 3) 4)

8. Решите уравнение: 6sin2 x + sin x – 1 = 0

1) 2) 3) нет корней; 4) .

9. Решите уравнение: 2sin2 x - sin 2x =0

10. Решите систему:


Контрольная работа по теме: Тригонометрические уравнения и неравенства. 10 класс.

Вариант

1. Вычислите: arcsin () + 0, 5arctg (- )

1) ; 2) ; 3) ; 4) - .

2. Вычислите: arcos () + arcctg ()

1) ; 2) ; 3) ; 4)- .

3. Решите уравнение: sin x + =0

1) 2) ; 3) 4)

4. Решите уравнение: ctg (x+ )=

1) 2) 3) 4)

5. Укажите уравнение, которому соответствует решение: :

1) ctg x = -1; 2) cos x = 0; 3) cos x = -1; 4) tg x = 1.

6. На каком из рисунков показано решение неравенства: sin x ≥ ?

1) 2) 3) 4)

 

 

7. Решите неравенство: ctg x ≥

1) 2) 3) 4)

8. Решите уравнение: cos2 x - 4sin x + 3 = 0

1) 2) 3) нет корней; 4) .

9. Решите уравнение: sin2 x -3sin x cos x =0

 

10. Решите систему:

 

 


Контрольная работа по теме: Производная. Применение производной. 10 класс.

Вариант.

1. Найдите производную функции

1) 2)

3) 4)

2. Найдите значение производной функции в точке

1) 1; 2) 0; 3) 0, 5; 4) -1.

3. Для какой функции найдена производная

1) 2) 3) 4)

4. Найдите значение углового коэффициента касательной, проведенной к графику функции в точке с абсциссой

 

1) -3; 2) 0; 3) 3; 4) 5.

 

5. Найдите , если sin 1) 2) 3) 4) 0.

 

6. Напишите уравнение касательной к графику функции в точке

с абсциссой

 

1) у = - 3х – 3; 2) у = 8х+13; 3) у = - 8х – 3; 4) у = - 8х +13.

 

7. Найдите скорость и ускорение точки в момент времени c., если она движется прямолинейно по закону (координата измеряется метрах).

1) 2) 3) 4)

8. Определите точку максимума функции

 

9. По графику производной функции 1

укажите количество промежутков 1 3

убывания функции

 

10. Найдите наибольшее и наименьшее значение функции

на промежутке

11. Найдите производную функции


Контрольная работа по теме: Производная. Применение производной. 10 класс.

Вариант.

1. Найдите производную функции

1) 2) 3) 4)

2. Найдите значение производной функции в точке

1) 2) 3) 4)

3. Для какой функции найдена производная sin

1) 2) 3) 4)

4. Найдите значение углового коэффициента касательной, проведенной к графику функции в точке с абсциссой 1) -6; 2) 4; 3) 6; 4) -5. 5. Найдите , если . 1) 0; 2) -1; 3) 4) - . 6. Напишите уравнение касательной к графику функции в точке с абсциссой .

1) у = - 9х – 6; 2) у = - 3х - 6; 3) у = 9х+16; 4) у = 9х - 6.

7. Найдите скорость и ускорение точки в момент времени cек., если она движется прямолинейно по закону (координата измеряется в метрах).

1) 2) 3) 4)

8. Определите минимум функции у

9. По графику производной функции

укажите длину промежутка возрастания 0 1 х

функции

 

10. Укажите наибольшее и наименьшее значение функции на данном промежутке .

11. Вычислите производную функции , если

 


Контрольная работа по теме: Применение непрерывности и производной. 10 класс.

1 Вариант.

1. Найдите тангенс угла наклона касательной, проведенной к графику функции в точке

1) -1, 5; 2) 3; 3) -3; 4) - 4, 5.

2. Решите неравенство:

 

1) [0; 1]U[4; + ; 2) (; 0)U(1; 4); 3) 4) (0; 1)U(4; .

 

3. Напишите уравнение касательной к графику функции

в точке с абсциссой

 

1) у = – 12х + 17; 2) у = 12х – 17; 3) у = 19х – 38; 4) у = 12х+32.

 

4. Решите неравенство методом интервалов.

 

1) 2) 3) 4)

 

5. Найдите скорость и ускорение точки в момент времени t = 1cек., если она движется прямолинейно по закону (координата измеряется в метрах).

1) 2) ; 3) ; 4) .

 

6. Определите абсциссы точек, в которых угловой коэффициент касаcтельной к графику функции

sin равен 2.

1) n, n 2) 3) 4) sin2.

7. Решите неравенство где

1) ; 2) 3) ; 4)

 

 

8. Вычислите с помощью формул приближенные значения выражений:

 

а) б)

 


Контрольная работа по теме: Применение непрерывности и производной. 10 класс.

Вариант.

1. Найдите тангенс угла наклона касательной, проведенной к графику функции в точке

1) -6; 2) 4; 3) 6; 4) -5.

2. Решите неравенство:

3. Напишите уравнение касательной к графику функции

в точке с абсциссой

4. Решите неравенство методом интервалов.

5. Найдите скорость и ускорение точки в момент времени t = 1 cек., если она движется прямолинейно по закону (координата измеряется в метрах).

6. Определите абсциссы точек, в которых угловой коэффициент касательной к графику функции

sin равен 2.

7. Решите неравенство где

8. Вычислите с помощью формул приближенные значения выражений:

 







Дата добавления: 2014-10-22; просмотров: 2585. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия