Студопедия — Третье началоКТД известно как теорема Нернста [121,122], следствием которой является так называемый принцип недостижимости нуля абсолютной темпе­ратуры. 11 страница
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Третье началоКТД известно как теорема Нернста [121,122], следствием которой является так называемый принцип недостижимости нуля абсолютной темпе­ратуры. 11 страница






Таблица 31

Спутники Расто- яние По орбите Каллисто № от поверх. Юпитера По поверх. Юпитера % оши- бки
1. Амальтея         0, 6
2. Ио          
3. Европа          
4. Ганнимед          
5. Каллисто          
6. 3 спутника         1, 5
7. 4 спутника         4, 5

31 и 32 приведены расчетные вели­чины радиусов орбит спутников Юпитера и Сатурна и количество неоднородностей (узлов) от поверхности до последнего спутника.

Точность нахождения спутников Юпитера в неоднородностях выше, чем аналогичная точность для планет, и находится в пределах 0, 5-7%, количество неоднород­ностей 104, из них заполнено только 7. В двух неоднородностях образуются орбиты (23 и 26) для трех и четы­рех спутников, вращающихся синхронно. Приведу, параметры спутни­ковой системы Сатурна:

Таблица 32

№ Спутники Рас- По ор- № от Расчет от %

сто- бите пов-ти пов-ти ошиб

яние Рея Сатурна Сатур. ки

1 Янус 158 166 5 152 4

2 Мимас 187 209 6 192 2, 5

3 Энцефелад 238 264 7 242 2

4 Тефия 295 332 8 304 3

5 Диона 378 419 9 383 1, 5

6 Рея 528 528 10 484 9

7 Титан 1123 1329 14 1218 8

8 Гиперион 1484 1675 15 1534 3

9 Япет 3563 4220 19 3867 8, 5

10 Феба 12950 13400 24 12270 5, 5

У Сатурна количество сфер неоднородности равно 96, из них заполнено спутниками 10. Плотность заполнения находится в пределах 1, 5-9%, что примерно соответст­вует плотности планетного заполнения. В тоже время еще не обнаружено планетных систем, у которых бы первые четыре неоднородности включали какие-то не­бесные тела.

Таким образом, используя объемный коэффициент, можно, в первом приближении, получать распределение небесных тел по орбитам в Солнечной системе.

 

7.2. Строение околосолнечного

пространства

 

Важнейшее значение для понимания структуры око­лосолнечной области имеет численная величина плотности пространства, ее изотропность или анизо­тропность по объему и влияние этой плотности на со­стояние и движение небесных тел. Напомню, что по сложившимся представлениям околосолнечное про­странство считается практически пустым, не отличаю­щемся по плотности от других звездных систем и по ко­личественной величине близкой к предполагаемой (?? – А.Ч.) средней плотности вещества Вселенной r = 10-30 г/см. Главное, — все исследователи (мне не известны исклю­чения ) рассматривают пространственную плотность изотропной по всему объему Вселенной. И эта изотроп­ность нарушается вкраплинами звезд и других плотных небесных тел отграниченными от космической плотно­сти своей поверхностью. Однако единая, общепризнан­ная величина космической плотности на сегодня в науке отсутствует. Различные исследователи получают теоре­тические величины плотности космического простран­ства, различающиеся на десятки порядков. Л. Шипицын [29] приводит данные Уиллера получившего эффек­тивную плотность вакуума r = 1095 г/См3. Близкая по ве­личине планковская плотность r о получается из теории размерности как соотношение гравитационной «посто­янной» G, скорости света с и постоянной Планка h:

r о = c5/G2h = 5, 18·1093 г/см3.

Различие между этими данными и предполагаемой средней плотностью веществ во Вселенной составляет 10125 раз. Это крайние пределы. Другие исследователи находят значения плотности в пределах 1013-1017 (Окунь), 1014 г/см3 (Фейнман), 2·1014 г/см3 (Зельдович). Зельдович отмечает так же, что теория тяготения не мо­жет объяснить тот факт, что плотность энергии вакуума превосходит в 1043 раза плотность вещества во вселен­ной. Имея столь колоссальный разброс в значениях плотности (но не густоты [150]), а, следовательно, и от­сутствие представления о конкретной величине ее в ок­рестностях Солнечной системы, придется исходить из той плотности r = 5, 52 г/см, которую, по современ­ным представлениям, имеет Земля. Поскольку именно плотность, соответствующая плотности окружающего космоса и обусловливает ее нахождение в данной облас­ти пространства. Это первая проблема.

Вторая проблема, подлежащая решению, заключается в том, что отсутствует ясность в пространственном рас­пределении плотности. По современным представлени­ям космический вакуум, занимающий пространство, од­нороден и изотропен. Этот вывод получается на основе количественного усреднения видимого вещества, вхо­дящего в звезды, туманности, галактики и все известное науке космическое пространство. Однако качественная взаимосвязь расстояния l и плотности r по КФР свиде­тельствуют о том, что пространственная плотность от поверхности небесных тел не может быть изотропной. Качественная размерность плотности по КФР равна rо = 214, аналогичная размерность расстояния (в данном слу­чае от поверхности тела — Земли в околосолнечное пространство) l о = 24 (табл. 12). Их инвариантная сово­купность:

(r-14)2 ·(l4)7 = 1,

свидетельствует, что от каждого космического тела плотность пространства с расстоянием очень быстро убывает. Это следует из инварианта:

r2l7 - const. (7.1)

Но как далеко? На какое расстояние от этого тела? Ло­гично предположить, что на такое расстояние, на кото­ром эффективная плотность пространства от двух тел (например, от Земли и Солнца) имеет одинаковую коли­чественную величину. Для тела, вращающегося на орби­те вокруг Солнца, таким расстоянием будут области на орбите впереди по движению и позади Земли, образую­щие с Солнцем и Землей равносторонние треугольники с углами по 60° (либрационные точки). Возможным подтверждением настоя­щего предположения является существование именно в этих космических областях, отмеченное пока только у некоторых небесных тел, либо облаков пыли (у Луны), либо скопления астероидов (у Юпитера). Наиболее показательными являются скопления, в либрационных точках, астероидов по обе стороны планеты Юпитер (рис. 84). Скопления эти по­лучили свое название. Впереди Юпитера на его орбите двигаются 9 астероидов «Греки», а позади, «догоняя» его, 5 астероидов — «Троянцы». Само существование этих групп свидетельствует, по-видимому, о том, что перед Юпитером в либрацйонной «точке» имеется некая гра­ница плотности, «под-талкивающая» «Греков», а за ним — такая же граница, не про-пускающая вперед «Троян­цев».

И граница эта движется одновременно с движени­ем Юпитера, реагируя на все изменения плотности ок­ружающего пространства от тел, приближающихся к ней. Если предположить, что эти границы обусловлены изменением плотности пространства от астероидов к Юпитеру. То следует признать, что Юпитер, как и вся­кое тело в космосе и, возможно, в любой другой облас­ти, например, на Земле, есть тело с движущейся грани­цей (нечто подобное наблюдается в гидродина-мике) и динамический объем, образуемый границами плотности на много порядков пере­крывает геометрические размеры самого Юпите­ра.

Зная, достаточно пре­дварительно, расстояние от планет до их либраци­онных «точек», и пола­гая, что плотность про­странства у поверхности Рис. 84. Земли равна rз = 5, 52 г/см (без учета вращения Земли вокруг оси) нахо­дим, какова величина плотности в либрацион­ных точках по орбите Земли. Определяем инвариант пространственной плот­ности:

rз2R37 = (5, 52)2·(6, 378108)7 = 1, 3082·1063. (7.2)

Похоже на то, что инвариант 1, 3082·1063 является универсальным отображением плотности для всего около­солнечного пространства и, чтобы получить плотность любой области пространства от Земли до либрационных точек, достаточно подставить в (7.2) расстояние l до данного места и решить инвариант относительно l. Подставляем расстояние до либрационных точек l = 1, 496·1013 см и определяем плотность r1' в них:

r = Ö (1, 308·10б3/1, 677·109 2) = 2.793·10-15 г/см3.

Плотность пространства в либрационных точках на одинаковом расстоянии от Солнца и Земли равна r1' =2, 793·10-15 г/см3. Зная ее по той же формул (7.2), опреде­ляем плотность пространства rс у поверхности Солнца:

rс = Ö [1, 308·1063/(6, 96·1010)7] = 4, 066·10-7 г/см3.

Получив плотность у поверхности Солнца, значительно меньшую, чем у поверхности Земли, определяем, чему равна масса М Солнца (без учета собственного враще­ния):

Mc = pcV = 5, 741·1026 г.

Масса Солнца оказалась на порядок меньше массы Земли, что совершенно невозможно, если исходить из классической механики и полагать, что именно масса определяет взаимное притяжение тел. Однако имеется много способов подтверждения правильности определе­ния массы Солнца. Вспомним, например, что отношение динамической массы электрона к его скорости на орбите ma/vn есть инвариант и, аналогично, определим, допус­тим по массе глобулы Урана ту = 8, 945·1024 г., массу Солнца Мс, учитывая, что орбитальная скорость глобулы vy = 6, 81·105 см/сек, а линейная скорость гравиполя Солн­ца vc = 4, 367·107 см/с (табл. 33). Запишем уравнение:

mn/vn = Mс/vc,

и, преобразовав его относительно Мс получим:

Мс = mсvc/vy = 5, 74·1026 г.

Результат тот же самый. Но в главе 2 было показано, что не масса обусловливает притяжение тел, и потому не будем пугаться полученного результата. И продолжим расчеты, исходя из того, что главное не промежуточные, сколь бы ни было впечатляющие, а конечные результаты, и отображают ли они существование системы. Оп­ределим, какова масса Мо динамического объема тела, образуемого движущейся границей Земли, предполагая, что она имеет форму шара:

Мо = Vr = 4/3 pl3r = 3, 917·1025 г.

Динамический объем пространства, образуемый дви­жущимися границами Земли, превышающий на трина­дцать порядков объем самой Земли, оказывается, име­ет массу на два порядка меньше чем масса ее тела. Это достаточно неожиданное обстоятельство, а также то, что масса динамического объема Солнца равна по порядку величины динамическому объему Земли, заставляет нас по иному взглянуть на механизм взаимодействия планет и Солнца. Рассчитаем по формуле (7.1) собственную массу планет, их динамическую массу и занесём полу­ченные величины в таблицу 33 (все расчеты проводятся по собственному времени Земли).

Обозначения: R - радиусы небесных тел; r ' - плот­ность пространства у поверхности небесных тел: М ' - расчетная масса небесных тел; r - плотность простран­ства на расстоянии l от небесных тел; М - масса дина­мического объема небесных тел; l' - расстояние от не­бесного тела до либрационной точки орбиты; v - скорость движения небесных тел по орбите; lс = mvt - квант солнечной системы, аналогичный постоянной Планка в микромире; - номер орбит от поверхности Солнца.

Зная динамическую массу каждой планеты (столбец 7), ее расстояние от Солнца (столбец 8) и скорость дви­жения (столбец 9), определим параметр постоянной ħ с, аналогичной постоянной Планка квантовой механики и занесем в столбец 10 таблицы 33:

ħ с = Мlv = 1, 745 1045. (7.3)

Величину ħ с = 1, 745·1045 можно назвать солнечной постоянной или солнечным квантом действия. (Инте­ресно, что почти такую же величину 1, 76·1043 получил Федосин С.Г. методом подобия [151].) Эта же постоянная по­лучается как произведение массы тела Солнца Мс = 5, 741·1026 г. на его радиус Rc = 6, 96·1010 см и линейную скорость вращения гравитационного поля у поверхности vc = 436, 9 км/с.

ħ c: = 5.741·1026·6, 96·1010·4, 369·107 = 1, 745·1045 . (7.4)

Таблица 33

Небесные тела R см 108 r', г/см3 М', г 1027 r, г/с3 М.г 1024 L, см 1012 v, км/с ħ c 1045 орб.
                     
  Солнце 696, 0 4, 1·10-7 0, 57 - - - 436, 7 1, 745
  Меркурий 2, 425 162, 9 9, 73 7, 74·10-14 62, 96 5, 790 47, 89 1, 746  
  Венера 6, 070 6, 564 6, 15 8, 68·10-15 46, 06 10, 82 35, 03 1, 746  
  Земля 6, 378 5, 520 5, 98 2, 79·10-15 39, 17 14, 96 29, 79 1, 746  
  Марс 3, 395 50, 17 8, 22 6, 40·10-16 31, 74 22, 79 24, 13 1, 745  
  Юпитер 71, 30 1, 2·10-3 1, 79 8, 70·10-18 17, 77 77, 83 13, 1 1, 746  
  Сатурн 60, 10 2, 2·10-3 1, 95 1, 04·10-18 12, 68 142, 7 9, 64 1, 745  
  Уран 24, 50 4, 9·102 3, 06 9, 04·10-20 8, 945 286, 9 6, 81 1, 748  
  Нептун 25, 10 4, 6·10-2 3, 04 1, 88·10-20 4, 145 449, 7 5, 43 1, 744  
  Плутон 3, 2?     7, 25·10-21 6, 237 590, 0 4, 74 1, 744  

Из (7.4) следует, что произведение массы, радиуса и скорости вращения гравиполя Солнца равно солнечной постоянной ħ с, и все динамические параметры движения планет определяются этой постоянной.

Таблица 33, конечно, удивительная. Планеты, разли­чающиеся по радиусу на порядок, а, следовательно, объ­емом до четырех порядков, обладают массой в пределах одного порядка, а при объеме, образованном динамиче­ским радиусом большим на ~ 4 порядков, массой прак­тически на два-три порядка меньше масс их тел. Именно эти обстоятельства обусловливают проявление солнеч­ного кванта действия ħ с = 1, 745·1045 от всех динамиче­ских объемов планет Солнечной системы.

Прежде чем анализировать таблицу 33, построим ана­логичные модели планетарных систем Юпитера и Са­турна, спутники которых обладают значительно боль­шим разбросом параметров, и потому возможность получения для них единого для планетной системы кванта действия вообще не рассматривается. Для расче­та параметров планетной системы Юпитера используем полученные в таблице 33 значения околопланетной плотности rю = 1, 183·10-3 г/см, массы Мю = 1, 794·1027 г, радиуса планеты Rю = 7, 13·109 см, скорости линейного вращения собственного гравиполя vю = 4, 297·106 см/с. Имея параметры Мю, R ю, vю, можно сразу получить квант действия ħ ю планетарной системы Юпитера и от­слеживать, как «вписываются» в своем движении в этот квант параметры его спутников:

ħ ю = MюvюRю = 5, 497·1043.

Рассчитаем квантовые параметры спутников Юпитера и заполним ими таблицу 34.

Данная таблица смотрится не менее выразительно, чем предыдущая. Особенно интересны положения Прометея и Геракла.

Похоже, Прометей радиусом 6 км, находя­щийся от Юпитера на 10 тыс. км дальше, чем Геракл, имеющий радиус 20 км, в 40 раз больший по объему и двигающийся медленнее Геракла, не позволяет ему об­гонять себя и потому их движение, вероятно, напомина­ет тандем (т.е. форма их движения аналогична движению фотонов в атоме).

Не менее интересная общность наблюдается у спутни­ков Гефест и Прозерпина. Оба они имеют одинаковый радиус, одинаковую приповерхностную плотность и одинаковую массу, но Гефест находится на 2, 6 млн. км ближе к поверхности Юпитера и потому должен иметь собственные параметры, определяющие его место на орбите, иные, чем Прозерпина. То, что их радиус, при­поверхностная плотность и масса совпадают, может свидетельствовать о том, что не эти параметры опреде­ляют их энергетические возможности, а, например, пе­риод пульсации или скорость собственного вращения вокруг оси, которые в данной таблице не учитываются. Надо отметить, что само по себе вращение вокруг Таблица 34.

Тела R', км р', г/см3 М', г р, г/см3 М, г l, см v, см/с 105 ħ 1043
                     
  Юпитер   1, 18·10-3 1, 79·1027 - - - 43, 0 5, 49  
  Амальтея   2, 48·10-7 5, 36·1028 4, 51·10-5 1, 12·1027 0, 18 27, 0 5, 49  
  Ио   525, 7 1, 15·1028 2, 35·10-6 7, 38 ·1026 0, 42 17, 7 5, 49  
  Европа   780, 2 1, 22·1028 4, 62·10-7 5, 85·1026 0, 67 14, 0 5, 49  
  Ганимед   146, 4 9, 58·1027 9, 02·10-8 4, 63·1026 1, 07 11, 1 5, 49  
  Каллисто   181, 8 9, 81·1027 1, 25·10-6 3, 49·1026 1, 88 8, 51 5, 59  
  Атлас   6, 84-7 6, 18·1028 2, 29·10-11 1, 42·1026 11, 4 3, 40 5, 49  
  Прометей 6, 0 2, 2·10-11 10" 11 1, 96·1029 2, 08·10-11 1, 40·1026 11, 7 3, 35 5, 49  
  Геракл   3, 18·10-9 1, 07·1029 2, 09·10-11 1, 40·1026 11, 7 3, 36 5, 49  
  Гефест 5, 5 2, 93·1011 2, 04·1029 2, 8·10-11 1, 05·1026 20, 7 2, 52 5, 49  
  Дедал 7, 5 9, 90·1010 1, 75·1029 2, 17·10-12 1, 03·1026 22, 3 2, 43 5, 49  
  Прозерп. 5, 5 2, 9·10-11 2, 01·1029 1, 87 ·10-12 9, 92·1025 23, 3 2, 38 5, 49  
  Цербер 7, 0 1, 3·10-11 1, 81·1029 1, 76·10-12 9, 84·1025 23, 7 2, 36 5, 49  

оси почти не отражается на динамической массе, но изменяет объем и массу вращающего тела и потому масса, отображаемая столбцом 5 данных таблиц, будет отличаться от истин­ных в пределах десятков процентов. Но околопланетная плотность эфира останется такой же. Однако можно предположить, что небесные спутники планет типа Ге­фест и Прозерпины взаимодействуют с пространством какой-то другой, еще не найденной совокупностью квантовых свойств. И, возможно, находящиеся на «близких» орбитах (или в окрестности одной) спутники «создают» своего рода «коллективную» плотность и по­тому движутся по орбите, вероятно, в виде «виноград­ной» грозди, перемещаясь относительно друг друга, но, не обгоняя и не отставая от своих соседей, объединен­ные одной эквипотенциальной поверхностью общей напряженности. Отложим анализ этих особенностей и продолжим. Для совместного рассмотрения спутников и планет в планетарных системах составим аналогичную таблицу спутниковой системы Сатурна (таблица 35).

Таблица 35.

  Тела R, км r' г/см3 M', г r, г/см3 М, гр. L, см v, см/с ħ
            1026 10'° 105 1043  
                     
  Сатурн   2, 15·10-3 1, 95·1027 э951027 - - - - 26, 1 3, 08  
  Янус   1, 61·10-6 3, 62·1028 7, 38·10-5 12, 1 1, 575 16, 2 3, 08  
  Мимас   4, 63·10-5 3, 03·1028 4, 17·10-5 11, 1 1, 854 14, 9 3, 08  
  Энцефел.   2, 93·10-5 2, 84·1028 1, 74·10-5 9, 83 2, 379 13, 5 3, 08  
  Тефия   5, 92·10-4 2, 26·1028 8, 23·10-6 8, 83 2, 948 11, 8 3, 08  
  Диана   6, 94·10-4 2, 31·1028 3, 46·10-6 7, 80 3, 777 10, 4 3, 08  
  Рея   1, 26·10-4 1, 81·1028 1, 08·10-6 6, 60 5, 267 8, 84 3, 08  
  Титан   161, 7 9, 72·1027 5, 69·10-8 4, 34 12, 21 5, 80 3, 08  
  Гиперион   1, 61·10-6 3, 62·1028 2, 87·10-8 3, 93 14, 84 5, 27 3, 08  
  Япет   1, 51·10-4 1, 86·1028 1, 34·10-9 2, 54 35, 63 3, 40 3, 08  
  Феба   2, 77·10-5 3, 98·1028 1, 46·10-11 1, 33 129, 6 1, 78 3, 08  

Коротко рассмотрим занесенные в таблицы параметры и отметим в первую очередь то обстоятельство, что все три таблицы составлены без учета каких бы то ни было квантовых методов. Использовались лишь зависимости между параметрами, заложенные в систему КФР. Но в результате решения оказалось, что планетарная и спут­никовые системы, вне зависимости от «случайного» расположения небесных тел на орбитах, включают в систему своих параметров единый для каждой систе­мы квант действия, полностью аналогичный постоян­ной Планка, но как бы не являющийся квантовой харак­теристикой остальных тел Солнечной системы.

Если положить, что первой орбитой (отмечу, что в квантовой теории первой орбитой является боровская орбита) для каждой из приведенных таблиц является орбита, по которой движется ближайшая к Солнцу планета в планетной системе, то используя коэффициент 1, 122462 …, можно с точностью до нескольких процентов провести «искусственное» квантование каждого из интересующих нас параметров в данных системах в точности так же, как было осуществлено при построении таблицы 33. В этом случае расстояние наружу от орбиты становится пропорциональным коэффициенту 1, 2599…, плотности – 2, 2449…, массы – 1, 13346…, скорости – 1, 12246, т.д., и только соответствующая этой системе постоянная ħ не будет изменяться. Отсчет производится от первой орбиты и в результате часть орбит будет заполнена телами (например, планетами), а часть не заполнена. Приведу в качестве примера, расчет, выполненный для Солнечной Системы по параметрам орбиты Меркурия (таблица 36).

Данная таблица, хотя и повторяет, со значительными отклонениями, количественные величины табл. 33, включает полностью квантованные величины парамет­ров планет. Проведение квантования аналогично кван­тованию структуры атома по таблице 24 обеспечили коэффициенты физической размеренности. Таблица 36 по структуре повторяет таблицу 24,

Таблица 36

  Коэффи-циенты 2, 2449 1, 12246 1, 25992 1, 12246 ħ № ор- биты
  Планеты Р' М' l' v км/с 1045  
               
  Мерку­рий 7, 74·10-14 6, 29·1025 5, 79·1012 47, 89 1, 746  
  Венера 4, 68·10-15 4, 45·1025 1, 16·1013 33, 86 1, 746  
  Земля 3, 05·10-15 3, 96·1025 1, 49·1013 30, 16 1, 746  
  Марс 6, 05·10-15 3, 15·1025 2, 32·1013 23, 94 1, 746  
  Юпитер 1, 06 10-17 1, 77·1025 7, 35·1015 13, 44 1, 746  
  Сатурн 9, 38·10-18 1, 25·1025 1, 47·1014 9, 50 1, 746  
  Уран 8, 29·10-20 8, 83·1024 2, 94·1014 6, 72 1, 746  
  Нептун 1, 64·10-20 7, 01·1024 4, 67·1014 5, 33 1, 746  
  Плутон 7, 33·10-21 6, 25·1024 5, 88·1014 4, 75 1, 746  

выполненную для на­хождения параметров орбит электронов в атоме водоро­да. Получение тем же методом приблизительных кван­товых характеристик планет Солнечной системы свидетельствует о том, что движение по законам меха­ники не исключает возможности квантования планетар­ных орбит. Из их полного подобия и некоторого отличия от более точных параметров таблицы 33 можно сделать вывод о том, что методы нахождения элементов элек­трона в атоме по законам квантовой механики не обес­печивают получения точных параметров орбиты и те­ла электронов. Более того, эти точные до шестого-седьмого знака величины затушевывают понимание фи­зических процессов, происходящих в атоме, уже пото­му, что отображают параметры движения динамиче­ских объемов электронов (о существовании последних наука еще не имеет никакого представления), которые по своим размерам отличаются от параметров тел электронов на много порядков, что само по себе свиде­тельствует о недостаточном понимании нами структуры и механики микропроцессов, включая и процессы обра­зования спектральных линий.







Дата добавления: 2014-10-29; просмотров: 571. Нарушение авторских прав; Мы поможем в написании вашей работы!



Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия