Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вращение твердого тела вокруг неподвижной оси





 

Вращением вокруг неподвижной оси называют такое движение твердого тела, при котором две какие-либо точки, принадлежащие телу, остаются неподвижными. Прямую, проходящую через эти точки, называют осью вращения тела. Перемещение тела из одного положения в другое называют поворотом. Все точки тела, лежащие на оси вращения, неподвижны. Все точки, не лежащие на оси вращения, описывают окружности, плоскости которых перпендикулярны оси вращения, а центры расположены на оси.

Тело, вращающееся вокруг неподвижной оси, имеет одну степень свободы, так как его положение в пространстве в любой момент времени полностью определяется одним независимым параметром – плоским углом j между двумя плоскостями: неподвижной и подвижной, жестко связанной с вращающимся телом (рис. 2.1). Этот угол называют угломповорота тела и измеряют в радианах. При этом принято считать угол поворота j положительным, если поворот тела, наблюдаемый с положительного направления оси Оz, виден происходящим против хода часовой стрелки.

Таким образом, закон вращательного движения можно считать установленным, если задан угол поворота тела как функция времени

. (2.6)

Основными кинематическими характеристиками вращательного движения тела в целом являются угловая скорость и угловое ускорение. Угловая скорость тела – это векторная величина, характеризующая интенсивность и направление изменения угла поворота тела.

 

Алгебраическое значение угловой скорости равно первой производной по времени от угла поворота тела

. (2.7)

Угловое ускорение тела – это векторная величина, характеризующая интенсивность изменения угловой скорости. Алгебраическое значение углового ускорения равно первой производной по времени от угловой скорости тела или второй производной по времени от угла поворота тела

. (2.8)

Размерность угловой скорости в системе СИ – рад/с, размерность углового ускорения – рад/с2. Число оборотов тела N и число оборотов в минуту n связаны с углом поворота j(t)и угловой скоростью следующими зависимостями:

j = 2p N рад;

рад/с.

Установим зависимости между общими кинематическими характеристиками вращательного движения тела в целом, а также скоростями и ускорениями различных точек этого тела. Траекториями точек тела при его вращении вокруг неподвижной оси являются окружности, лежащие в плоскостях, перпендикулярных оси вращения, радиусы которых равны расстояниям от этих точек до оси вращения. Применяя естественный способ задания движения точки тела и учитывая, что , где h – расстояние от точки до оси вращения тела (см. рис. 2.1), для скорости и ускорения точки М запишем

(2.9)

(2.10)

(2.11)

где v – алгебраическое значение скорости точки М; и – алгебраические значения составляющих полного вектора ускорения этой точки. Здесь величины и соответствуют касательному и нормальному ускорениям точки, однако, при изучении вращательного движения их принято называть вращательным ускорением () и осестремительным или центростремительнымускорением (). Определим модуль полного вектора ускорения точки

. (2.12)

Из приведенных формул видно, что скорости, ускорения и составляющие ускорения точек тела, вращающегося вокруг неподвижной оси, пропорциональны расстояниям от точек до оси вращения тела.

Приведем также векторные формулы, описывающие кинематические характеристики тела и его точек (см. рис. 2.1), для чего введем векторы угловой скорости и углового ускорения

(2.13)

где – единичный вектор оси, совпадающий по направлению с положительным направлением оси вращения тела; и – величины, имеющие смысл проекций векторов угловой скорости и углового ускорения на ось вращения тела. Таким образом, вектор угловой скорости располагается на оси вращения и направлен так, что с его вершины вращение тела наблюдается против стрелки часов. Вектор углового ускорения тоже располагается на оси вращения. Если знаки и совпадают, то он направлен так же, как и вектор угловой скорости (вращение ускоренное), а в противном случае – противоположно вектору угловой скорости (вращение замедленное).

Скорость и ускорение точки тела определим по формулам:

(2.14)

где – радиус-вектор точки, проведенный из любой точки на оси вращения тела, знак «» означает векторное произведение.

Вращение называют равномерным, если в процессе движения угловая скорость остается постоянной по модулю и по направлению, т.е., если . Умножив правую и левую части этого равенства на величину dt и проинтегрировав левую часть полученного равенства в пределах от до φ, а правую – от 0 до t, получим закон равномерного вращения:

. (2.15)

Вращение называют равнопеременным, если угловое ускорение тела в процессе движения остается постоянным по модулю и направлению, т.е., если . Чтобы найти закон изменения угловой скорости в этом случае, проинтегрируем левую часть равенства пределах от до , а правую часть – от 0 до t:

. (2.16)

Так как , то полученное выражение запишем в следующем виде . Интегрируя это выражение при изменении угла поворота от до и времени от 0 до t, запишем закон равнопеременного вращения:

. (2.17)

 







Дата добавления: 2014-10-29; просмотров: 972. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия