Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вывод расчетных формул





В данной работе рассматривается скатывание тел с наклонной плоскости (рис. 1.1). Если угол a наклона плоскости мал, то при движении отсутствует скольжение. Между телом и плоскостью в точках их соприкосновения возникает трение, являющееся трением покоя. Так как эти точки в каждый момент времени неподвижны, то сила трения, действующая на катящееся тело, работы не совершает. Поэтому полная энергия катящегося тела остается постоянной.

Рис. 1.1.

 

Поскольку тело совершает вращение и его центр масс, через который проходит ось вращения, перемещается поступательно, кинетическая энергия складывается из энергии поступательного и вращательного движений.

Согласно закону сохранения механической энергии, потенциальная энергия тела на вершине плоскости (в точке А) равна сумме кинетической энергии поступательного движения тела и кинетической энергии вращательного движения тела :

, (1.1)

где m – масса скатывающегося тела;

g – ускорение свободного падения;

h – высота наклонной плоскости (h = h 2 h 1);

u – линейная скорость центра масс тела в точке В;

I – момент инерции тела относительно оси вращения;

w – угловая скорость вращения тела.

Так как скольжение отсутствует, то

, (1.2)

где R – радиус катящегося тела.

Из формул (1.1) и (1.2) следует, что

. (1.3)

Момент инерции тел, обладающих симметрией вращения, можно записать в виде

,

где k – безразмерный коэффициент.

Так, для шара

тогда

;

для тонкостенного полого цилиндра

I = mR 2,

тогда

;

для сплошного цилиндра

,

тогда

.

Учитывая, что

, (1.4)

 

получим формулу для скорости тела в точке В:

 

. (1.5)

Движение тела по наклонной плоскости будет равноускоренным, так как происходит под действием постоянной силы – силы тяжести. Для равноускоренного движения без начальной скорости

 

; (1.6)

 

, (1.7)

где l – длина пути по наклонной плоскости;

а – ускорение центра масс тела;

t ск – время скатывания тела по наклонной плоскости АВ.

Из выражений (1.6) и (1.7) следует, что

 

, (1.8)

 

тогда из формул (1.5) и (1.8) получим:

, (1.9)

или

. (1.10)

 

Время скатывания тела по наклонной плоскости АВ определим из формул (1.5), (1.6), (1.10):

. (1.11)

 

Из формул (1.5), (1.10), (1.11) видно, что u, t ск и а зависят от формы тела (коэффициент k) и не зависят от его массы и размеров.

Скорость тела в точке В можно также определить из законов движения тела по траектории BD. Для этого вектор скорости разложим на вертикальную и горизонтальную составляющие. Движение по параболе BD можно рассматривать как равномерное в горизонтальном направлении с постоянной скоростью и равноускоренное в вертикальном направлении с начальной скоростью и ускорением g. Путь при равномерном движении определяется по формуле

, (1.12)

а при равноускоренном –

, (1.13)

где t – время свободного полета тела по кривой BD;

х – горизонтальная дальность полета тел;

у – путь, проходимый телом по вертикали ВС.

Подставляя значения u x и u у в уравнения (1.12) и (1.13), получим:

 

; (1.14)

 

. (1.15)

Выразив из уравнения (1.14) время:

,

 

и подставив в формулу (1.15), получим:

 

(1.16)

Полученное уравнение есть уравнение параболы. Таким образом, тело, скатившись с наклонной плоскости, дальше движется по ветви параболы BD.

Из уравнения (1.16) найдем скорость тела в точке В по экспериментальным данным. Обозначим эту скорость :

. (1.17)

 







Дата добавления: 2014-10-29; просмотров: 575. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия