Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

И вывод расчетной формулы. Существует несколько методов определения модуля упругости





 

Существует несколько методов определения модуля упругости. В данной работе используется метод, основанный на деформации изгиба.

Установка для определения модуля упругости (рис. 4.3) состоит из подставки, на которой расположены вертикальные стойки 1 с опорными призмами. На призмы помещается испытуемый образец 2. К середине стержня при помощи специального устройства 3 навешиваются грузы, которые деформируют (изгибают) стержень. Величину деформации (стрелу прогиба) измеряют с помощью индикатора 4.

 

 

Рис. 4.3.

 

Для определения модуля упругости по деформации изгиба необходимо знать величину деформирующей силы, приложенной к середине стержня и вызывающей его изгиб F, и стрелу прогиба l, т. е. величину смещения средней части стержня от первоначального положения (рис. 4.4).

Теоретические расчеты показывают, что для стержня любого сечения стрела прогиба определяется по формуле

. (4.5)

Отсюда

, (4.6)

где Е – модуль упругости (Юнга);

– сила, действующая на стержень и вызывающая деформацию

изгиба;

– длина стержня;

Q – коэффициент, характеризующий форму стержня.

 

Рис. 4.4.

 

Для стержня прямоугольного сечения шириной а и толщиной b (рис. 4.5, а)

. (4.7)

Для квадратного сечения

. (4.8)

В случае сплошного стержня (рис. 4.5, б)

. (4.9)

 

Для трубки с наружным радиусом и внутренним (рис. 4.5, в)

 

. (4.10)

 

Рис. 4.5.

Подставляя эти значения в формулу (4.6), получим выражение для определения модуля упругости. Для стержней прямоугольного сечения

, (4.11)

квадратного сечения

, (4.12)

трубки

, (4.13)

 

сплошного стержня кругового сечения

. (4.14)

 







Дата добавления: 2014-10-29; просмотров: 646. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия