Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теоремы сложения и умножения вероятностей. Теорема сложения вероятностей несовместных событий





 

Теорема сложения вероятностей несовместных событий. Вероятность появления одного из двух несовместных событий, безразлично какого, равна сумме вероятностей этих событий

Р (А + В) = Р (А) (В).

Следствие 1. Вероятность появления одного из нескольких попарно несовместных событий, безразлично какого, равна сумме вероятностей этих событий

.

Следствие 2. Сумма вероятностей противоположных событий равна 1

.

Пример 4.1. Студент пришел на зачет, зная из 30 вопросов только 24. Преподаватель задает три вопроса. Зачет будет сдан, если студент ответит хотя бы на два из трех вопросов. Какова вероятность того, что этот студент сдаст зачет.

Решение. Пусть — событие, состоящее в том, что студент ответит на два из заданных трех вопросов, — он ответит на все три вопроса. Тогда, если А — студент сдаст зачет, то . События и несовместны. По классическому определению вероятности

 

По теореме сложения для несовместных событий

Ответ: Р = 0, 907.

 

 

Пример 4.2. На стеллаже библиотеки в случайном порядке расставлено 15 учебников, причем пять из них в переплете. Библиотекарь берет наудачу четыре учебника. Найти вероятность того, что по крайней мере два из них в переплете.

Решение. Пусть А — событие, состоящее в том, что по крайней мере два из четырех взятых учебников будут в переплете. Это событие можно представить как сумму трех несовместных событий , где — два учебника в переплете, — три учебника, — четыре учебника в переплете. Найдем вероятности этих событий. Число всех возможных исходов этого опыта

Для события число благоприятных исходов 450,

для события , для . Следовательно,

, , .

По теореме сложения для несовместных событий

Ответ:

 

 

Теорема сложения вероятностей совместных событий. Вероятность появления хотя бы одного из двух совместных событий равна сумме вероятностей этих событий без вероятности их совместного появления

Р (А + В) = Р (А) (В) – Р (АВ).

Теорема может быть обобщена на любое конечное число совместных событий

 

 

Определение 1. Условной вероятностью события А называется вероятность события А, вычисленная при условии, что произошло событие В. (Условную вероятность будем рассматривать лишь для таких событий В, вероятность наступления которых отлична от нуля).

Условная вероятность события А при условии, что событие В произошло обозначается символами или .

 

Определение 2. Условной вероятностью события А при условии, что произошло событие В с , называется число , которое определяется формулой

.







Дата добавления: 2014-11-10; просмотров: 812. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия