Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Геометрические вероятности





 

Геометрическое определение вероятности может быть использовано в том случае, когда вероятность попадания случайной точки в любую часть области пропорциональна мере этой области (длине, площади, объему и т.д.) и не зависит от ее расположения и формы.

Если геометрическая мера всей области равна S, а геометрическая мера части этой области, попадание в которую благоприятствует данному событию, есть , то вероятность события равна . Области могут иметь любое число измерений.

Пример 3.1. Какова вероятность того, что сумма двух наугад взятых положительных чисел, каждое из которых не больше единицы, не превзойдет единицы, а их произведение будет не больше ?

Решение.

Пусть х и у — взятые числа (см. рис. 3.1). Их возможные значения ; , что на плоскости соответствует квадрату с площадью . Благоприятствующие значения удовлетворяют условиям и . Граница х + у =
=
1 делит квадрат пополам, причем область представляет собой нижний треугольник. Вторая граница является гиперболой. Абсциссы точек пересечения этих границ (точек В и С) и . Величина благоприятствующей площади ОАВСD (на рис. 3.1 она заштрихована)

Ответ:

 

 

Пример 3.2. На отрезке АВ, длина которого l, наугад ставятся две точки, в результате чего этот отрезок оказывается разделенным на три части. Найти вероятность того, что из трех получившихся частей можно составить треугольник.

Решение. Обозначим через х, у и l – х – у части отрезка АВ. Тогда ; ; . На плоскости этой области соответствует треугольник, ограниченный осями координат и прямой .

 

 

Рис. 3.2

Треугольник из полученных отрезков можно будет составить, если сумма длин двух из них превзойдет третью сторону, т.е.

и , .

Благоприятствующая площадь (см. рис. 3.2 заштрихованный треугольник) равна

. .

Ответ: .

Пример 3.3. На бесконечную шахматную доску со стороной квадрата а наудачу бросается монета радиуса . Найти вероятности следующих событий: А = «монета попадет целиком внутрь одного квадрата», В = «монета пересечет не более одной стороны квадрата».

Решение. Пусть (х, у)— координаты центра упавшей монеты (рис. 3.3). В силу бесконечности шахматной доски можно считать, что элементарные исходы данного эксперимента полностью определяются положением центра упавшей монеты относительно вершин квадрата, содержащего этот центр. Помещая начало координат в одну из вершин указанного квадрата можно записать множество элементарных исходов в виде , . Множество, соответству­ющее событию А: , , т.е. является квадратом со стороной .

Следовательно, ; ; .

Множество, соответствующее событию В, изображено на рис. 3.3.

 
 

 

 


Рис. 3.3

; , .

Ответ: ; .

 

 

Пример 3.4. Шар помещен внутрь эллипсоида . Найти вероятность того, что поставленная наудачу внутри эллипсоида точка окажется внутри шара.

Решение. Искомая вероятность будет равна отношению объема шара к объему эллипсоида. Объем шара равен , т.е. . Объем эллипсоида , следовательно, . .

Ответ: .

 

 

Пример 3.5. (Задача о встрече). Два человека в течение промежутка времени случайным образом приходят к месту встречи и ждут время . Какова вероятность, что они встретятся.

Решение. Пусть х — время прихода первого человека, а у — второго. Х и у удовлетворяют условиям: , . Поскольку они приходят случайным образом, то все исходы равновозможны и S будет равна площади квадрата со стороной Т: Событие А = {они встретятся} можно задать так . Это множество образуют те точки, которые лежат внутри квадрата , между прямыми и . Поэтому . Искомая вероятность .

Ответ: .

 

 







Дата добавления: 2014-11-10; просмотров: 1777. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия