Геометрические вероятности
Геометрическое определение вероятности может быть использовано в том случае, когда вероятность попадания случайной точки в любую часть области пропорциональна мере этой области (длине, площади, объему и т.д.) и не зависит от ее расположения и формы. Если геометрическая мера всей области равна S, а геометрическая мера части этой области, попадание в которую благоприятствует данному событию, есть , то вероятность события равна . Области могут иметь любое число измерений. Пример 3.1. Какова вероятность того, что сумма двух наугад взятых положительных чисел, каждое из которых не больше единицы, не превзойдет единицы, а их произведение будет не больше ? Решение. Пусть х и у — взятые числа (см. рис. 3.1). Их возможные значения ; , что на плоскости соответствует квадрату с площадью . Благоприятствующие значения удовлетворяют условиям и . Граница х + у = Ответ:
Пример 3.2. На отрезке АВ, длина которого l, наугад ставятся две точки, в результате чего этот отрезок оказывается разделенным на три части. Найти вероятность того, что из трех получившихся частей можно составить треугольник. Решение. Обозначим через х, у и l – х – у части отрезка АВ. Тогда ; ; . На плоскости этой области соответствует треугольник, ограниченный осями координат и прямой .
Рис. 3.2 Треугольник из полученных отрезков можно будет составить, если сумма длин двух из них превзойдет третью сторону, т.е. и , . Благоприятствующая площадь (см. рис. 3.2 заштрихованный треугольник) равна . . Ответ: . Пример 3.3. На бесконечную шахматную доску со стороной квадрата а наудачу бросается монета радиуса . Найти вероятности следующих событий: А = «монета попадет целиком внутрь одного квадрата», В = «монета пересечет не более одной стороны квадрата». Решение. Пусть (х, у)— координаты центра упавшей монеты (рис. 3.3). В силу бесконечности шахматной доски можно считать, что элементарные исходы данного эксперимента полностью определяются положением центра упавшей монеты относительно вершин квадрата, содержащего этот центр. Помещая начало координат в одну из вершин указанного квадрата можно записать множество элементарных исходов в виде , . Множество, соответствующее событию А: , , т.е. является квадратом со стороной . Следовательно, ; ; . Множество, соответствующее событию В, изображено на рис. 3.3.
Рис. 3.3 ; , . Ответ: ; .
Пример 3.4. Шар помещен внутрь эллипсоида . Найти вероятность того, что поставленная наудачу внутри эллипсоида точка окажется внутри шара. Решение. Искомая вероятность будет равна отношению объема шара к объему эллипсоида. Объем шара равен , т.е. . Объем эллипсоида , следовательно, . . Ответ: .
Пример 3.5. (Задача о встрече). Два человека в течение промежутка времени случайным образом приходят к месту встречи и ждут время . Какова вероятность, что они встретятся. Решение. Пусть х — время прихода первого человека, а у — второго. Х и у удовлетворяют условиям: , . Поскольку они приходят случайным образом, то все исходы равновозможны и S будет равна площади квадрата со стороной Т: Событие А = {они встретятся} можно задать так . Это множество образуют те точки, которые лежат внутри квадрата , между прямыми и . Поэтому . Искомая вероятность . Ответ: .
|