Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вывод статистических характеристик





Следующим этапом частотного анализа данных является получение описательной статистики. Для вычисления статистических характеристик случайной величины необходимо выполнить следующее: в диалоге Частоты щелкнуть на кнопке Статистики. Откроется диалоговое окно Частоты: Статистики (рис.2.5).

В группе Значения процентилей можно выбрать следующие варианты:

· Квартили. Будут показаны первый, второй и третий квартили.

· Процентили для (Точки раздела): Будут вычислены значения процентилей, разделяющие выборку на группы наблюдений, которые имеют одинаковую ширину, то есть включают одно и то же количество измеренных значений. По умолчанию предлагается количество групп 10. Если задать, например, 4, то будут показаны квартили, то есть квартили соответствуют процентилям 25, 50 и 75. видно, что число показываемых процентилей на единицу меньше заданного числа групп.

· Процентили. Здесь имеются в виду значения процентилей, определяемые пользователем.

 

Рис.2.5. Диалоговое окно «Частоты: Статистики»

 

Введите значение процентиля в пределах от 0 до 100 и щелкните на кнопке Добавить. Повторите эти действия для всех желаемых значений процентилей.

В группе Разброс можно выбрать меры разброса:

· Стандартное отклонение. Оно равно квадратному корню из дисперсии. В интервале шириной, равной удвоенному стандартному отклонению, который отложен по обе стороны от среднего значения, располагается примерно 67% всех значений выборки, подчиняющейся нормальному распределению.

· Дисперсия. Она определяется как сумма квадратов отклонений всех измеренных значений от их среднеарифметического значения, деленная на количество измерений минус 1. (В SPSS встроена функция исправленной дисперсии, поэтому в знаменателе присутствует «минус 1»).

· Размах – разница между наибольшим значением (максимумом) и наименьшим значением (минимумом).

· Минимум.

· Максимум.

· Стандартная ошибка среднего значения. В интервале шириной, равной удвоенной стандартной ошибке, отложенному вокруг среднего значения, располагается среднее значение генеральной совокупности с вероятностью примерно 67%. Стандартная ошибка определяется как стандартное отклонение, деленное на квадратный корень из объема выборки.

В группе Расположение можно выбрать следующие характеристики:

· Среднее значение. Это арифметическое среднее измеренных значений; оно определяется как сумма значений, деленная на их количество.

· Медиана – это точка на шкале измеренных значений, выше и ниже которой лежит по половине всех измеренных значений.

· Мода – это значение, которое наиболее часто встречается в выборке. Если распределение имеет несколько мод, то говорят, оно мультимодально или многомодально (имеет два и более «пика»).

· Сумма всех значений.

В группе Распределение можно выбрать следующие меры несимметричности распределения:

· Ассиметрия (коэффициент ассиметрии) – это мера отклонения распределения частоты от симметричного распределения, то есть такого, у которого на одинаковом удалении от среднего значения по обе стороны выборки данных располагается одинаковое количество значений. Если наблюдения подчиняются нормальному распределению, то асимметрия равна нулю. Для проверки на нормальное распределение можно применять следующее правило: если асимметрия значительно отличается от нуля, то гипотезу о том, что данные взяты из нормально распределенной генеральной совокупности, следует отвергнуть. Если вершина асимметричного распределения сдвинута к меньшим значениям, то говорят о положительной асимметрии, в противоположном случае – об отрицательной.

· Эксцесс (Коэффициент вариации) – указывает, является ли распределение пологим (при большом значении коэффициента) или крутым. Эксцесс равен нулю, если наблюдения подчиняются нормальному распределению. Поэтому для проверки на нормальное распределение можно применять ещё одно правило: если коэффициент вариации значительно отличается от нуля, то гипотезу о том, что данные взяты из нормально распределенной генеральной совокупности, следует отвергнуть.

 







Дата добавления: 2014-11-10; просмотров: 653. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия