Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Истечение жидкости через малое отверстие в тонкой стенке





Малым называется отверстие, в различных точках которого геометрический напор Н практически одинаков, то есть если его диаметр d (для круглых отверстий) или высота а (для прямоугольных отверстий) весьма малы по сравнению с напором Н.

Стенка считается тонкой, если она не оказывает влияния на характер истечения. Установлено, что при этом толщина стенки δ < =(1/1.5)d.

На расстоянии L=(0.5/1.0)d от плоскости отверстия образуется так называемое сжатое сечение струи с-с (рис.5.1), в котором течение можно считать параллельно-струйным. Площадь сжатого сечения Sc=ε S, где ε – коэффициент сжатия; S – площадь отверстия.

При истечении из малых отверстий в тонкой стенке при постоянном напоре скорость V в сжатом сечении и расход жидкости определяются по формулам:

 

V=j , (5.1)

 

Q=µS , (5.2)

где j= - коэффициент скорости, характеризующий уменьшение действительной скорости V по сравнению с теоретической скоростью истечения Vt= ; ξ – коэффициент потери напора (сопротивления); μ =ε j - коэффициент расхода; Н – расчётный напор; α – коэффициент Кориолиса.

 

Рис 5.1. Истечение через малое отверстие в тонкой стенке.

Н=НО+ . (5.3)

Скорость жидкости в резервуарах V0 обычно принимается равной нулю.

Обычно при истечении маловязких жидкостей (вода, керосин, бензин) из малых отверстий в тонкой стенке принимают средние значения коэффициентов: j=0, 97; ξ =0, 06; ε =0, 64; μ =0, 62. В общем случае коэффициенты истечения зависят от рода жидкости, температуры, формы и размеров отверстия, величины напора, условий подхода к отверстию (сжатие струи, скорость подхода, угол наклона плоскости стенки) и выхода из него (истечение в атмосферу, под уровень или при частичном затоплении отверстия).

Коэффициенты расхода при свободном истечении воды из малых круглых и квадратных отверстий в тонкой стенке при различных напорах приведены в табл. 5.1 и 5.2.

Сжатие называется совершенным, если боковые стенки и дно сосуда практически не влияют на истечение, то есть удалены от ближайшей точки контура отверстия на достаточное расстояние L (L> =3a или L> =3d). При несовершенном сжатии боковые стенки и дно сосуда влияют на истечение и коэффициент расхода

μ нп=μ [1+0.64()2], (5.4)

где Sб – площадь поперечного сечения бака, сосуда или смоченная площадь стенки, в которой находится отверстие.

Сжатие струи при подходе к отверстию может быть полным (по всему периметру) и неполным, когда с одной или нескольких сторон жидкость при подходе к отверстию не испытывает сжатие.

Для неполного сжатия коэффициент расхода можно определить по формуле:

μ нп=μ [1+k ], (5.5)

где X – периметр всего отверстия; X1 – периметр той части контура отверстия, где отсутствует сжатие. Коэффициент k=0, 128 – для круглых отверстий;

k=0, 152 – для квадратных отверстий.

Таблица 5.1.

Коэффициент расхода μ при истечении воды из малых круглых отверстий в тонкой стенке.

Напор над центром отверстия μ при диаметре отверстия, м
0, 006 0, 015 0, 03 0, 06 0, 18
0, 2 0, 653 0, 623 0, 611 0, 601 0, 589
0, 24 0, 648 0, 62 0, 61 0, 601 0, 591
0, 3 0, 644 0, 617 0, 608 0, 6 0, 594
0, 4 0, 638 0, 613 0, 605 0, 6 0, 595
0, 5 0, 635 0, 611 0, 605 0, 6 0, 597
0, 6 0, 632 0, 61 0, 604 0, 599 0, 597
1, 0 0, 624 0, 606 0, 603 0, 599 0, 598
1, 5 0, 62 0, 605 0, 601 0, 598 0, 597
2, 0 0, 616 0, 604 0, 6 0, 598 0, 597
3, 0 0, 611 0, 601 0, 598 0, 597 0, 598

 

Таблица 5.2.

Коэффициент расхода μ при истечении воды из малых квадратных отверстий в тонкой стенке.

Напор над центром отверстия μ при стороне квадрата, м
0, 006 0, 015 0, 03 0, 06 0, 18
0, 2 0, 658 0, 629 0, 617 0, 605 0, 598
0, 24 0, 652 0, 625 0, 615 0, 605 0, 6
0, 3 0, 648 0, 622 0, 613 0, 605 0, 6
0, 4 0, 642 0, 618 0, 61 0, 605 0, 601
0, 5 0, 64 0, 616 0, 61 0, 605 0, 601
1, 0 0, 63 0, 611 0, 607 0, 605 0, 603
1, 5 0, 628 0, 61 0, 606 0, 604 0, 602
2, 0 0, 623 0, 609 0, 605 0, 604 0, 602
3, 0 0, 616 0, 606 0, 604 0, 603 0, 601

 

На рис. 5.2 приведены графики зависимости μ, j, ε от ReT для круглого отверстия при совершенном и полном сжатии (по А.Д.Альтшулю). Число Рейнольдса ReТ рассчитывалось по теоретической скорости истечения:

 

ReТ= = , (5.6)

 

При ReТ< 25 ε =1 и μ =j. В этом случае для определения μ можно использовать теоретическую формулу:

 

µ=j= , (5.7)

 

откуда

 

μ = , (5.8)

 

При ReТ→ ∞ j→ 1, а ε → µ→ 0, 605.

 

 

Фото 5 Установка ГД-7







Дата добавления: 2014-11-10; просмотров: 962. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия