Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Ошибка репрезентативности основного показателя силы влияния





Точная формула ошибки основного показателя силы влияния еще не найдена.

В однофакторных комплексах, когда ошибка репрезентативности определяется только для одного показателя факториального влияния, удобнее пользоваться таким вариантом общей формулы:

(15.24)

В двухфакторных комплексах, если рассчитаны дисперсии, можно использовать формулу:

, (15.25)

где индекс i – V, А, В или АВ.

Если дисперсии не рассчитываются, то наиболее удобна общая формула:

(15.26)

В этом случае для двухфакторного комплекса находится постоянная величина и умножением ее на число степеней свободы по каждому влиянию находятся ошибки показателя этих влияний для данного комплекса.

Предлагаемая ошибка репрезентативности основного показателя силы влияния имеет существенные отличия от обычных ошибок выборочных показателей. Отношение основного показателя силы влияния к этой его ошибке:

(15.27)

равно не критерию Стьюдента (как обычно), а критерию Фишера при двух степенях свободы: ν 1 = r – 1, ν 2 = N – r.

Использование предлагаемой ошибки для определения достоверности влияния дает точно такие же результаты, как и критерий Фишера.

Преимущество предлагаемой ошибки заключается в том, что по ней можно определить хотя бы приближенно доверительные границы основного показателя силы влияния, чего нельзя сделать при помощи критерия Фишера.

Эти доверительные границы определяются по обычной формуле, в которой вместо критерия Стьюдента (t) введен критерий Фишера (F):

(15.28)

Предлагаемая формула ошибки основного показателя силы влияния обладает еще одним важным свойством: критерий достоверности, полученный по этой ошибке, учитывает различие в достоверности показателей для комплексов различной структуры, т. е. одинакового объема, но с разным числом градаций (r) и с разной повторностью (n). Если, например, исследованы два комплекса одинакового объема N = 100 с одинаковым выборочным показателем силы влияния = 0, 6, но с разной структурой r1 = 2, n1 = 50, r2 = 50,
n2 = 2, то достоверность показателя первого комплекса должна быть значительно выше по сравнению с достоверностью показателя второго комплекса.

В первом комплексе показатель влияния получен при анализе 2 частных средних (r1 = 2), из которых каждая подкреплена 50 данными (n1 = 50) и поэтому в гораздо меньшей степени отражает случайности в формировании средних величин.

Во втором комплексе, наоборот, показатель влияния получен при анализе 50 частных средних, из которых каждая усредняет всего 2 признака и потому подвержена в гораздо большей степени случайностям в привлечении данных в градации.

Большое различие в достоверности показателя силы влияния в этих двух комплексах в достаточной степени отражено в ошибке репрезентативности:

в критерии достоверности:

;

;

и в доверительных границах:

;

;

Следует отметить, что резкое различие комплексов по достоверности их показателей совершенно не учитывается обычной ошибкой корреляционного отношения. Для обоих только что разобранных комплексов ошибка репрезентативности корреляционного отношения будет одинаковой:







Дата добавления: 2014-11-10; просмотров: 738. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия