Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Постановка задачи, методы решения, ограничения





Предположим, имеется n объектов с m характеристиками. В результате измерений каждый объект характеризуется вектором x1... xm, m > 1. Задача состоит в том, чтобы по результатам измерений отнести объект к одной из нескольких групп (классов) G1,... Gk, k > = 2. Иными словами, нужно построить решающее правило, позволяющее по результатам измерений параметров объекта указать группу, к которой он принадлежит. Число групп заранее известно, также известно, что объект заведомо принадлежит к определенной группе.

Пусть X – пространство значений вектора измерений. Решающее правило называется нерандомизированным, если пространство X разбито на k непересекающихся областей; при попадании измерения параметров объекта в k –ю область объект относится к k –й группе.

Решающее правило называется рандомизированным, если для каждого вектора наблюдений х задана вероятность pi(x), с которой объект принадлежит i -й группе, pi(x) ≥ 0; p1(x) +... + pk(x) = 1; i =1,... k.

Очевидно, при использовании решающего правила возникают потери, вызванные тем, что объект неправильно классифицирован – отнесен к классу i, когда в действительности он принадлежит классу j (i не равно j).

Если значение потерь трудно оценить численно, то при построении оптимального правила используют критерий минимальной вероятности ложной классификации.

В дискриминантном анализе можно задать априорные вероятности принадлежности объекта к определенному классу. На практике эти вероятности оцениваются из массива экспериментальных данных.

Так как массив экспериментальных данных накапливается, то эти оценки постепенно уточняются. При этом можно учесть различные факторы, влияющие на принадлежность объекта к определенному классу, например, если поступает мука в хлебное производство, то можно учесть сезонные факторы: вероятность того, что мука будет лучшего качества осенью выше той же вероятности весной.

В случае двух групп объектов дискриминантный анализ эквивалентен множественной регрессии (зависимой переменной является номер группы).

Независимые переменные с наибольшими стандартизированными коэффициентами регрессии дают наибольший вклад в предсказание принадлежности объекта к группе.

Для практических целейреализовано два общих метода дискриминантного анализа: стандартный и пошаговый (включения и исключения). Данные методы дискриминантного анализа аналогичны методам множественной регрессии. В случае двух групп методом наименьших квадратов строится регрессионная прямая (зависимая переменная – номер группы, все остальные переменные – независимые). Если групп несколько, то можно представить себе, что вначале строится дискриминация между группами 1 и 2, затем между 2 и 3, и так далее.

В пошаговом методе модель строится последовательно по шагам. Для метода включения на каждом шаге оценивает вклад в функцию дискриминации не включенных в модель переменных. Переменная, дающая наибольший вклад, включается в модель, далее система переходит к следующему шагу. Если применяется так называемый пошаговый метод исключения, то вначале в модель включаются все переменные, затем производится их последовательное исключение.

Близкими к методам дискриминантного анализа являются методы дисперсионного анализа, кластерного и факторного анализов, а также, как уже говорилось, методы множественной регрессии. Отличие кластерного анализа от дискриминантного в том, что в нем заранее не фиксировано число групп (кластеров).







Дата добавления: 2014-11-10; просмотров: 564. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия