Тема 4. Линейные операторы
Понятие линейного оператора. Образ и прообраз векторов. Матрица линейного оператора в заданном базисе. Ранг оператора. Операции над линейными операторами. Нулевой и тождественный операторы. Собственные векторы и собственные значения линейного оператора (матрицы). Характеристический многочлен матрицы. Диагональный вид матрицы линейного оператора в базисе, состоящем из его собственных векторов. ([1 или 5, § 3.6, 3.7]; [2 или 6, § 3.3, 3.4], или [3, § 3.6, 3.7, 3.12, 3.13], или [4, § 3.8, 3.10, 3.18, 3.19]). . В этой теме рассматривается одно из базовых понятий линейной алгебры – понятие линейного оператора (преобразования, отображения), представляющего закон (правило), по которому каждому вектору х n -мерного пространства Линейность оператора определяется выполнением свойств аддитивности и однородности оператора [1, или 5, или 3, § 3.6]. Нужно знать, что каждому линейному оператору Особую роль в приложениях линейной алгебры играют векторы, которые под воздействием линейного оператора Если базис линейного оператора составить из собственных векторов, то матрица оператора имеет наиболее простой вид и представляет собой диагональную матрицу, а соответствующая операция называется приведением данной матрицы к диагональному виду ([1, или 5, или 3, пример 3.8]).
|