Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод Рунге-Кутта





Наиболее распространеннымв практике интегрирования обыкновенных дифференциальных уравнения является метод Рунге-Кутта. При его использовании решение уравнений представляется в виде итерационных формул Рунге-Кутта.

Пусть дано уравнение

,

удовлетворяющее начальному условию .

Выберем достаточно малый шаг и построим систему равноотстоящих точек:

, .

Рассмотрим метод Рунге-Кутта четвертого порядка:

,

где

,

,

,

.

Достоинством метода Рунге-Кутта является то, что при его использовании нет необходимости вычислять производные выше первого порядка, аосновные недостатки – громоздкость и значительный объем вычислений на каждом шаге.

Алгоритм численного интегрирования

дифференциальных уравнений методом Рунге-Кутта

Вданной задаче исходная система уравнений имеет вид:

,

с начальными условиями , .

Сопряженная система уравнений:

,

с граничными условиями , .

Зададим начальные условия , .

1. Для интегрирования уравнений в интервале времени от t до разобьем интервал на Р частей с шагом .

2. Пусть . Определяем значение .

3. Для уравнений исходной и сопряженной систем определяем величины: , , , ; , , , ; , , , ; , , , .

Для уравнения :

,

,

,

.

Для уравнения :

,

,

,

.

Для уравнения :

,

,

,

.

Для уравнения :

,

,

,

.

4. Далее вычисляем:

,

,

,

.

5. Процедуру вычисления значений , , , повторяем при последующих значениях .







Дата добавления: 2014-11-10; просмотров: 402. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия