Дифракция Фраунгофера на одной щели
Практически щель представляется прямоугольным отверстием, длина которого значительно больше ширины. В этом случае свет дифрагирует вправо и влево от щели (рис. 8.2). Если наблюдать изображение источника в направлении, перпендикулярном направлению образующей щели, то можно ограничиться рассмотрением дифракционной картины в одном измерении (вдоль х).
Если волна падает нормально к плоскости щели, в соответствии с принципом Гюйгенса - Френеля, точки щели являются вторичными источниками волн, колеблющимися в одной фазе, так как плоскость щели совпадает с фронтом падающей волны. Разобьем площадь щели на ряд узких полосок равной ширины, параллельных образующей щели. Фазы волн от разных полосок на одинаковых расстояниях, в силу вышесказанного, равны, амплитуды также равны, ибо выбранные элементы имеют равные площади и одинаково наклонены к направлению наблюдения. Если бы при прохождении света через щель соблюдался закон прямолинейного распространения света (не было бы дифракции), то на экране Э, установленном в фокальной плоскости линзы L 2, получалось бы изображение щели. Следовательно, направление j = 0 определяет недифрагированную волну с амплитудой A 0, равной амплитуде волны, посылаемой всей щелью. Вследствие дифракции световые лучи отклоняются от прямолинейного распространения на углы j. Отклонение вправо и влево симметрично относительно осевой линии OC 0 (рис. 8.5, C j и C- j). Для отыскания действия всей щели в направлении, определяемом углом j, необходимо учесть разность фаз, характеризующую волны, доходящие до точки наблюдения C j от различных полосок (зон Френеля), ибо, как указывалось выше, в побочном фокусе линзы C j собираются все параллельные лучи, падающие на линзу под углом к ее оптической оси OC 0, перпендикулярной фронту падающей волны. Проведем плоскость FD, перпендикулярную к направлению дифрагированных лучей и представляющую фронт новой волны. Так как линза не вносит дополнительной разности хода лучей, ход всех лучей от плоскости FD до точки C j одинаков. Следовательно, полная разность хода лучей от щели FE задается отрезком ED. Проведем плоскости, параллельные волновой поверхности FD, таким образом, чтобы они разделили отрезок ED на несколько участков, каждый из которых имеет длинуl/2 (рис. 8.2). Эти плоскости разделят щель на вышеупомянутые полоски - зоны Френеля, причем разность хода от соседних зон равна l/2 в соответствии с методом Френеля. Тогда результат дифракции в точке C j определится числом зон Френеля, укладывающихся в щели (см. дифракцию Френеля на круглом отверстии): если число зон четное (z = 2 k), в точке C j наблюдается минимум дифракции, если z - нечетное (z = 2 k+ 1), в точке C j - максимум дифракции. Число зон Френеля, укладывающихся на щели FE, определяется тем, сколько раз в отрезке ED содержится l/2 т.е. . Отрезок ED, выраженный через ширину щели а и угол дифракции j, запишется как ED = а sin j. В итоге для положения максимумов дифракции получаем условие а sin j = ±(2k + 1)l / 2, (8.5) для минимумов дифракции а sin j = ± 2 k l /2, (8.6) где k = 1, 2, 3.. - целые числа. Величина k, принимающая значения чисел натурального ряда, называется порядком дифракционного максимума. Знаки + и - в формулах (8.5) и (8.6) соответствуют лучам света, дифрагирующим от щели под углами +j и -j и собирающимся в побочных фокусах линзы L 2: C j и C -j, симметричных относительно главного фокуса C 0. В направлении j = 0 наблюдается самый интенсивный центральный максимум нулевого порядка, ибо колебания от всех зон Френеля приходят в точку C 0 в одной фазе. Положение максимумов дифракции по формуле (8.5) соответствует углам и т.д.
На рис. 8.6 приведена кривая распределения интенсивности света в функции sin j. Положение центрального максимума (j = 0) не зависит от длины волны и, следовательно, является общим для всех длин волн. Поэтому в случае белого света центр дифракционной картины представится в виде белой полоски. Из рис. 8.3 и формул (8.5) и (8.6) ясно, что положение максимумов и минимумов зависит от длины волны. Поэтому простое чередование темных и светлых полос имеет место только при монохроматическом свете. В случае белого света дифракционные картины для волн с разными lсдвигаются в соответствии с длиной волны. Центральный максимум белого цвета имеет радужную окраску только по краям (на ширине щели укладывается одна зона Френеля). Боковые максимумы для разных длин волн уже не совпадают между собой; ближе к центру располагаются максимумы, соответствующие более коротким волнам. Длинноволновые максимумы отстоят друг от друга дальше ( j = arcsin l/2), чем коротковолновые. Поэтому дифракционный максимум представляет собой спектр, обращенный к центру фиолетовой частью. Полное гашение света не происходит ни в одной точке экрана, так как максимумы и минимумы света с разными l перекрываются.
Дифракционная решетка Рассмотрим дифракцию на одномерной дифракционной решетке, так как этот случай дифракции находит широкое применение во многих экспериментальных методах спектрального анализа. Дифракционная решетка представляет собой систему большого числа одинаковых по ширине и параллельных друг другу щелей, лежащих в одной плоскости и разделенных непрозрачными промежутками, равными по ширине. Дифракционная решетка изготавливается путем нанесения параллельных штрихов на поверхность стекла с помощью делительных машин. Места, прочерченные делительной машиной, рассеивают свет во все стороны и являются, таким образом, практически непрозрачными промежутками между неповрежденными частями пластинки, которые играют роль щелей. Число штрихов на 1 мм определяется областью спектра исследуемого излучения - от 300 1/мм (в инфракрасной области) до 1200 1/мм (в ультрафиолетовой).
Итак, имеется система из N параллельных щелей с шириной каждой щели a и расстоянием между соседними щелями b (рис.8.4). Сумма a + b = d называется периодом или постоянной дифракционной решетки. На решетку нормально падает плоская монохроматическая волна. Требуется исследовать интенсивность света, распространяющегося в направлении, составляющем угол j с нормалью к плоскости решетки. Кроме распределения интенсивности вследствие дифракции на каждой щели, нужно учесть интерференцию между N пучками (перераспределение световой энергии за счет интерференции волн от N щелей когерентных источников). Очевидно, что минимумы будут находиться на прежних местах, ибо условие минимума дифракции для всех щелей (рис. 8.5) одинаково. Эти
Рис. 8.5
минимумы называются главными. Условие главных минимумов a sin j = ± k lсовпадает с условием (8.8). Положение главных минимумов sin j = ± l /a, 2l /a,... показано на рис. 8.5. Однако в случае многих щелей к главным минимумам, создаваемым каждой щелью в отдельности, добавляются минимумы, возникающие в результате интерференции света, прошедшего через различные щели. Появляются добавочные минимумы в областях дифракционных максимумов. Внешне это проявляется в том, что широкие полосы, даваемые одной узкой щелью, покрываются рядом более тонких полос, вызванных интерференцией лучей, исходящих от разных щелей: первой и второй, первой и третьей и т.д. Чем больше щелей, тем больше добавочных минимумов может возникнуть. Так как общий световой поток остается неизменным, происходит усиление световых потоков около направлений, удовлетворяющих условиям усиления при интерференции от разных щелей, за счет уменьшения световой энергии в других направлениях. На рис. 8.5 для примера показано распределение интенсивности и расположение максимумов и минимумов в случае двух щелей с периодом d и шириной щели a. В одном и том же направлении все щели излучают совершенно одинаково. Амплитуды колебаний одинаковы. И результат интерференции зависит от разности фаз колебаний, исходящих от сходственных точек соседних щелей (например, C и E, B и F), или от оптической разности хода ED от сходственных точек двух соседних щелей до точки C j. Для всех сходственных точек эта разность хода одинакова. Если ED = ± k l или, так как ED = d sinj, d sinj = ± k l, k = 0, 1, 2..., 8.7) колебания соседних щелей взаимно усиливают друг друга, и в точке C j фокальной плоскости линзы наблюдается максимум дифракции. Амплитуда суммарного колебания в этих точках экрана максимальна: A max = N A j, (8.8) где A j - амплитуда колебания, посылаемого одной щелью под углом j; интенсивность J max = N 2 A j2 = N 2 J j.(8.9) Поэтому формула (8.9) определяет положение главных максимумов интенсивности. Число k дает порядок главного максимума. Положение главных максимумов (8.9) определяется соотношением . (8.10) Максимум нулевого порядка один и расположен в точке C 0, максимумов первого, второго и т.д. порядков по два, и расположены они симметрично относительно C 0, на что указывает знак +. На рис. 8.5 показано положение главных максимумов. Кроме главных максимумов, имеется большое число более слабых побочных максимумов, разделенных добавочными минимумами. Побочные максимумы значительно слабее главных. Расчет показывает, что интенсивность побочных максимумов не превышает 1/23 интенсивности ближайшего главного максимума. В главных максимумах амплитуда в N раз, а интенсивность в N 2раз больше, чем дает в соответствующем месте одна щель. Это увеличение максимумов происходит за счет того, что отдельные яркие главные максимумы разделены темными областями добавочных минимумов и очень слабых побочных максимумов (пропорционально 1/ N), которые становятся более узкими (тонкими и яркими). Такие яркие линии, четко локализованные в пространстве, легко обнаруживаются и могут быть использованы в целях спектроскопических исследований. По мере удаления от центра экрана интенсивность дифракционных максимумов убывает (увеличивается расстояние от источников). Поэтому не удается наблюдать все возможные дифракционные максимумы. Заметим, что количество дифракционных максимумов, даваемых решеткой по одну сторону экрана, определяется условием ½ sinj½ £ 1 (j = p / 2 - максимальный угол дифракции), откуда с учетом (8.7) . (8.11) При этом не следует забывать, что k - целое число. Положение главных максимумов зависит от длины волны l. Поэтому при освещении дифракционной решетки белым светом все максимумы, кроме центрального (k = 0), разложатся в спектр, обращенный фиолетовым концом к центру дифракционной картины. Таким образом, дифракционная решетка может служить для исследования спектрального состава света, т.е. для определения частот (или длин волн) и интенсивности всех его монохроматических компонент. Применяемые для этого приборы называются дифракционными спектрографами, если исследуемый спектр регистрируется с помощью фотопластинки, и дифракционными спектроскопами, если спектр наблюдается визуально. Характеристики дифракционной решетки Качество дифракционной решетки характеризуется ее угловой дисперсией и разрешающей силой. Угловая дисперсия. Основное назначение дифракционной решетки - установление длины волны исследуемого излучения, т.е. определение различия в длинах волн двух близких спектральных линий. Так как положение спектральных линий задается углом, определяющим направление лучей (формула 8.9), целесообразно ввести угловую дисперсию D - угловое расстояние между двумя линиями, отличающимися по длине волны на 1 нм (рис. 8.6), . (8.12) Угловую дисперсию дифракционной решетки можно найти, взяв дифференциал от (8.7): d cosj d j = k d l, откуда . (8.13)
Чем меньше период решетки d и чем выше порядок спектра k, тем больше угловая дисперсия. В пределах небольших углов (cos j » 1) можно положить D = k / d. (8.14)
Возможность разрешения (т.е. раздельного восприятия) двух близких спектральных линий зависит не только от расстояния между ними, которое определяется дисперсией решетки D, но и от ширины спектрального максимума. Если максимумы спектральных линий расположены настолько близко, а ширина максимумов так велика, что минимум между линиями исчезает (рис. 8.7, a, сплошная кривая) или этот минимум есть, но a б в Рис.8.7
интенсивность в промежутке между максимумами составляет более 80% от интенсивности максимума (рис. 8.7, б, сплошная кривая), то оба максимума (l1 и l2 ) воспринимаются как один. Два близких максимума воспринимаются глазом раздельно, если интенсивность в промежутке между ними составляет не более 80% от интенсивности максимума (рис. 8.7, в, сплошная кривая). Согласно критерию Рэлея такое соотношение интенсивности имеет место, если середина одного максимума совпадает с краем другого. Разрешающая сила. Разрешающей силой R решетки называется величина, обратная минимальной разности длин волн Dl (взятой около некоторой длины волны l), разделенных (разрешенных) данной решеткой:
R = l / Dl. (8.15) Можно показать, что R = kN, (8.16)
где N - общее число щелей решетки; k - порядок спектра. Большая разрешающая сила решетки достигается за счет больших значений N.
|