Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Физический маятник





Физическим маятником называют твердое тело, способное совершать колебания вокруг некоторой оси, не проходящей через его центр масс. В положении равновесия центр масс маятника (точка С) находится с точкой подвеса маятника О на одной вертикали (рис. 13).

Колебания физического маятника, так же как и математического происходят под действием силы тяжести. При отклонении маятника от положения равновесия на угол j возникает вращающий момент силы тяжести относительно горизонтальной оси, проходящей через точку О, равный

,  

где – радиус вектор, проведенный из точки О в точку приложения силы тяжести, т.е. до центра масс тела (точка С).

 

Рис. 13. Физический маятник

Модуль момента силы тяжести равен

, (4)

где l – расстояние от точки подвеса до точки приложения силы тяжести, т.е. до центра масс тела.

Из уравнения динамики вращательного движения тела следует, что момент силы тяжести равен произведению момента инерции тела на его угловое ускорение, т.е.

, (5)

где I – момент инерции тела относительно оси вращения, e – угловое ускорение. Знак минус означает, что направление вектора момента силы тяжести противоположно направлению вектора углового ускорения.

Учитывая, что , уравнение (5) с учетом (4) можно записать в виде

.  

Это уравнение приводится к следующему виду:

.  

Введем обозначение . При малых углах отклонения можно считать, что . Тогда дифференциальное уравнение колебания физического маятника (6) запишется как

.

Решение этого уравнения имеет вид

,

где – максимальный угол отклонения маятника от положения равновесия называемой амплитудой гармонических колебаний, – начальная фаза колебаний; – циклическая частота.

Поскольку , то период колебания физического маятника равен

.

Для математического маятника, момент инерции которого равен

,

выражение для периода колебаний будет следующим

.

Из сопоставления последних двух формул получается, что математический маятник с длиной

(6)

будет иметь такой же период колебаний, как и данный физический маятник. Эту величину называют приведенной длиной физического маятника.

Точку на прямой, соединяющей точку подвеса с центром масс, лежащую на расстоянии приведенной длины от оси вращения, называют центром качания физического маятника (точка на рис. 13). При переносе точки подвеса в центр качания период колебания маятника будет прежним. Точка подвеса и центр качания обладают свойством взаимности: при переносе точки подвеса в центр качания прежняя точка подвеса становится новым центром качания, и период колебаний физического маятника не изменится.

Обозначим момент инерции физического маятника относительно оси проходящий через центр масс за . Тогда, используя теорему Штейнера, получим

. (7)

Подставив в уравнение (6) момент инерции, определяемый выражением (7) получим следующее выражение:

. (8)

Из уравнения (8) видно, что приведенная длина всегда больше l, так что точка подвеса O и центр качания лежат по разные стороны от центра масс C. Зная период колебания T, массу маятника m и приведенную длину, можно рассчитать момент инерции I физического маятника

(9)

или

, (10)

где l – расстояние от точки подвеса до центра масс.







Дата добавления: 2014-11-10; просмотров: 2066. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия