Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Математический маятник





Математическим маятником обычно называют тело малых размеров (материальную точку), подвешенное к неподвижной точке на невесомой нерастяжимой нити и совершающее движение в вертикальной плоскости под действием силы тяжести.

Рассмотрим движение плоского математического маятника по дуге радиуса l с центром в точке О (рис. 12). Определим положение точки М углом отклонения радиуса ОМ от вертикали. Направляя касательную из точки М в сторону положительного отсчёта угла , уравнение движения материальной точки из второго закона Ньютона будет иметь вид:

, (1)

где – сила тяжести, действующая на точку М, – натяжение нити.

Уравнение (1) является основным законом динамики движения и в проекции на ось τ представляет движения точки по заданной неподвижной гладкой кривой:

,

Рис. 12. Математический маятник

где – проекция силы тяжести по касательной. Получаем

.

Поскольку

или

то, сокращая на m и, полагая , уравнение движения материальной точки M будет иметь вид:

,

Для малых углов отклонения маятника, при которых , оно сводится к уравнению гармонических колебаний

. (1)

Решение данного уравнения может быть записано в виде

, (2)

где А – амплитуда, δ – начальная фаза колебания.

Таким образом, при малых амплитудах математический маятник совершает гармонические колебания с частотой и периодом .

Если определить период колебания математического маятника при длине , а затем удлинить нить и снова определить период колебания при длине , то

, .

Из разности двух последних выражений

,

получим

, (3)

Формула (3) позволяет определить ускорение силы тяжести при помощи математического маятника.







Дата добавления: 2014-11-10; просмотров: 694. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия