Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задача декомпозиции





Задача декомпозиции – это задача построения сети автоматов N, реализующей заданный автомат. Таким образом, задача декомпозиции состоит в том, чтобы для заданного автомата построить сеть из более простых автоматов, которая бы реализовала заданный автомат.

При декомпозиции используется аппарат разбиения множества состояний. Дадим необходимые определения.

Пусть существует множество состояний автомата S:

 

S= { 1, 2, 3, 4, 5, 6 }. (1.17)

 

Разбиением p множества S называют множество его подмножеств, которые не пересекаются между собой и в объединении дают множество S. Эти подмножества называют блоками разбиения.

Например, для заданного множества (1.17) разбиением может быть

 

p1(S) = { 1234, 56 }.

 

Одноэлементным разбиением множества S p0(S) называется такое разбиение, в котором в каждом блоке содержится ровно 1 элемент множества S.

p0(S) = { 1, 2, 3, 4, 5, 6 }.

 

p разбиения можно сравнивать между собой по величине элементов. Разбиение pi £ pj, если каждый блок разбиения pi входит в какой-нибудь блок разбиения pj.

Например, пусть множество S (1.17) имеет три p разбиения: разбиение p1(S) = { 1234, 56 }, p2(S)={12, 34, 56} и p3(S) = { 15, 34, 26 }. При сравнении разбиений p1 и p2 следует, что p1(S) ³ p2(S) так как все блоки разбиения p2 полностью входят в блоки разбиения p1. При сравнении разбиения p3 с разбиениями p1 или p2 можно сделать вывод, что данные разбиения нее сравнимы, так как блоки ни одно из разбиений полностью не входят друг в друга.

Произведением разбиений pi(S) и pj(S) называется разбиение pk(S) такое, что pi(S) ³ pk(S) и pj(S) ³ pk(S) и не найдётся разбиение pm(S) множества S pm(S) > pk(S), удовлетворяющего условиям: pi(S) ³ pm(S) и pj(S) ³ pm(S).

Например для разбиений p1(S) = {1234, 56 } и p2(S) = { 1256, 34 } произведением будет разбиение pk(S) = p1(S) x p2(S) = { 12, 34, 56 }. Разбиение pk(S) получается перемножением каждого блока разбиений p1(S) и p2(S) между собой (1234 х 1256 = 12; 1234 х 34 = 34 и т.д.). Произведение разбиений содержит все непустые пересечения блоков разбиений-сомножителей.

Множество разбиений p1(S), p2(S), …, pn(S) называется ортогональным, если произведение всех разбиений равно одноэлементному разбиению множества S, т.е. p1(S) x p2(S) x … x p n(S) = p0(S).

Например выберем для множества состояний S (1.17) разбиения

p1(S) = { 1234, 56 }, p2(S) = { 1256, 34 } и p3(S) = { 135, 246 }. Проверка показывает, что p1(S) x p2(S) x p3(S) = { 1, 2, 3, 4, 5, 6 } = p0(S).

Рассмотрим последовательность вычислений:

pk(S) = p1(S) x p2(S) = { 12, 34, 56 };

pk(S) x p3(S) = { 1, 2, 3, 4, 5, 6 }.

Это означает, что разбиения p1(S), p2(S) и p3(S) – ортогональны.

Общая теорема декомпозиции. Множеству разбиений {pi(S), i=1, N} можно поставить в соответствие абстрактную сеть автоматов, реализующих заданный автомат S, тогда и только тогда, когда выбранные p разбиения ортогональны

 

. (1.18)







Дата добавления: 2014-11-10; просмотров: 863. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия