Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задача декомпозиции





Задача декомпозиции – это задача построения сети автоматов N, реализующей заданный автомат. Таким образом, задача декомпозиции состоит в том, чтобы для заданного автомата построить сеть из более простых автоматов, которая бы реализовала заданный автомат.

При декомпозиции используется аппарат разбиения множества состояний. Дадим необходимые определения.

Пусть существует множество состояний автомата S:

 

S= { 1, 2, 3, 4, 5, 6 }. (1.17)

 

Разбиением p множества S называют множество его подмножеств, которые не пересекаются между собой и в объединении дают множество S. Эти подмножества называют блоками разбиения.

Например, для заданного множества (1.17) разбиением может быть

 

p1(S) = { 1234, 56 }.

 

Одноэлементным разбиением множества S p0(S) называется такое разбиение, в котором в каждом блоке содержится ровно 1 элемент множества S.

p0(S) = { 1, 2, 3, 4, 5, 6 }.

 

p разбиения можно сравнивать между собой по величине элементов. Разбиение pi £ pj, если каждый блок разбиения pi входит в какой-нибудь блок разбиения pj.

Например, пусть множество S (1.17) имеет три p разбиения: разбиение p1(S) = { 1234, 56 }, p2(S)={12, 34, 56} и p3(S) = { 15, 34, 26 }. При сравнении разбиений p1 и p2 следует, что p1(S) ³ p2(S) так как все блоки разбиения p2 полностью входят в блоки разбиения p1. При сравнении разбиения p3 с разбиениями p1 или p2 можно сделать вывод, что данные разбиения нее сравнимы, так как блоки ни одно из разбиений полностью не входят друг в друга.

Произведением разбиений pi(S) и pj(S) называется разбиение pk(S) такое, что pi(S) ³ pk(S) и pj(S) ³ pk(S) и не найдётся разбиение pm(S) множества S pm(S) > pk(S), удовлетворяющего условиям: pi(S) ³ pm(S) и pj(S) ³ pm(S).

Например для разбиений p1(S) = {1234, 56 } и p2(S) = { 1256, 34 } произведением будет разбиение pk(S) = p1(S) x p2(S) = { 12, 34, 56 }. Разбиение pk(S) получается перемножением каждого блока разбиений p1(S) и p2(S) между собой (1234 х 1256 = 12; 1234 х 34 = 34 и т.д.). Произведение разбиений содержит все непустые пересечения блоков разбиений-сомножителей.

Множество разбиений p1(S), p2(S), …, pn(S) называется ортогональным, если произведение всех разбиений равно одноэлементному разбиению множества S, т.е. p1(S) x p2(S) x … x p n(S) = p0(S).

Например выберем для множества состояний S (1.17) разбиения

p1(S) = { 1234, 56 }, p2(S) = { 1256, 34 } и p3(S) = { 135, 246 }. Проверка показывает, что p1(S) x p2(S) x p3(S) = { 1, 2, 3, 4, 5, 6 } = p0(S).

Рассмотрим последовательность вычислений:

pk(S) = p1(S) x p2(S) = { 12, 34, 56 };

pk(S) x p3(S) = { 1, 2, 3, 4, 5, 6 }.

Это означает, что разбиения p1(S), p2(S) и p3(S) – ортогональны.

Общая теорема декомпозиции. Множеству разбиений {pi(S), i=1, N} можно поставить в соответствие абстрактную сеть автоматов, реализующих заданный автомат S, тогда и только тогда, когда выбранные p разбиения ортогональны

 

. (1.18)







Дата добавления: 2014-11-10; просмотров: 863. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия