Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задача декомпозиции





Задача декомпозиции – это задача построения сети автоматов N, реализующей заданный автомат. Таким образом, задача декомпозиции состоит в том, чтобы для заданного автомата построить сеть из более простых автоматов, которая бы реализовала заданный автомат.

При декомпозиции используется аппарат разбиения множества состояний. Дадим необходимые определения.

Пусть существует множество состояний автомата S:

 

S= { 1, 2, 3, 4, 5, 6 }. (1.17)

 

Разбиением p множества S называют множество его подмножеств, которые не пересекаются между собой и в объединении дают множество S. Эти подмножества называют блоками разбиения.

Например, для заданного множества (1.17) разбиением может быть

 

p1(S) = { 1234, 56 }.

 

Одноэлементным разбиением множества S p0(S) называется такое разбиение, в котором в каждом блоке содержится ровно 1 элемент множества S.

p0(S) = { 1, 2, 3, 4, 5, 6 }.

 

p разбиения можно сравнивать между собой по величине элементов. Разбиение pi £ pj, если каждый блок разбиения pi входит в какой-нибудь блок разбиения pj.

Например, пусть множество S (1.17) имеет три p разбиения: разбиение p1(S) = { 1234, 56 }, p2(S)={12, 34, 56} и p3(S) = { 15, 34, 26 }. При сравнении разбиений p1 и p2 следует, что p1(S) ³ p2(S) так как все блоки разбиения p2 полностью входят в блоки разбиения p1. При сравнении разбиения p3 с разбиениями p1 или p2 можно сделать вывод, что данные разбиения нее сравнимы, так как блоки ни одно из разбиений полностью не входят друг в друга.

Произведением разбиений pi(S) и pj(S) называется разбиение pk(S) такое, что pi(S) ³ pk(S) и pj(S) ³ pk(S) и не найдётся разбиение pm(S) множества S pm(S) > pk(S), удовлетворяющего условиям: pi(S) ³ pm(S) и pj(S) ³ pm(S).

Например для разбиений p1(S) = {1234, 56 } и p2(S) = { 1256, 34 } произведением будет разбиение pk(S) = p1(S) x p2(S) = { 12, 34, 56 }. Разбиение pk(S) получается перемножением каждого блока разбиений p1(S) и p2(S) между собой (1234 х 1256 = 12; 1234 х 34 = 34 и т.д.). Произведение разбиений содержит все непустые пересечения блоков разбиений-сомножителей.

Множество разбиений p1(S), p2(S), …, pn(S) называется ортогональным, если произведение всех разбиений равно одноэлементному разбиению множества S, т.е. p1(S) x p2(S) x … x p n(S) = p0(S).

Например выберем для множества состояний S (1.17) разбиения

p1(S) = { 1234, 56 }, p2(S) = { 1256, 34 } и p3(S) = { 135, 246 }. Проверка показывает, что p1(S) x p2(S) x p3(S) = { 1, 2, 3, 4, 5, 6 } = p0(S).

Рассмотрим последовательность вычислений:

pk(S) = p1(S) x p2(S) = { 12, 34, 56 };

pk(S) x p3(S) = { 1, 2, 3, 4, 5, 6 }.

Это означает, что разбиения p1(S), p2(S) и p3(S) – ортогональны.

Общая теорема декомпозиции. Множеству разбиений {pi(S), i=1, N} можно поставить в соответствие абстрактную сеть автоматов, реализующих заданный автомат S, тогда и только тогда, когда выбранные p разбиения ортогональны

 

. (1.18)







Дата добавления: 2014-11-10; просмотров: 863. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия