Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Модель многослойной сети





Сеть прямой передачи FF

Синтаксис:

net = newff(PR, [S1 S2...SNI], {TF1 TF2...TFNI}, btf, blf, pf)

Описание:

Функция newff предназначена для создания многослойных нейронных сетей прямой передачи сигнала с заданными функциями обучения и настройки, которые используют метод обратного распространения ошибки.

Функция net = newff(PR, [SI S2... SN1], {TF1 TF2... TFN1}, btf, blf, pf) формирует многослойную нейронную сеть.

Входные аргументы:

PR - массив размера Rx2 минимальных и максимальных значений для R векторов входа;

Si - количество нейронов в слое i;

TF i - функция активации слоя i, по умолчанию tansig;

btf - обучающая функция, реализующая метод обратного распространения, по умолчанию trainlm;

blf - функция настройки, реализующая метод обратного распространения, по умолчанию learngdm;

pf - критерий качества обучения, по умолчанию mse.

Выходные аргументы:

net - объект класса network object многослойной нейронной сети.

Свойства сети:

Функциями активации могут быть любые дифференцируемые функции, например tansig, logsig или purelin.

Обучающими функциями могут быть любые функции, реализующие метод обратного распространения: trainlm, trainbfg, trainrp, traingd и др.

Функция trainlm является обучающей функцией по умолчанию, поскольку обеспечивает максимальное быстродействие, но требует значительных ресурсов памяти. Если ресурсы памяти недостаточны, воспользуйтесь следующими рекомендациями:

• установите значение свойства net.trainParam.mem_reduc равным 2 или более, что снизит требования к памяти, но замедлит обучение;

• воспользуйтесь обучающей функцией trainbfg, которая работает медленнее, но требует меньшей памяти, чем М-функция trainlm;

• перейдите к обучающей функции trainrp, которая работает медленнее, но требует меньшей памяти, чем М-функция trainbfg.

Функциями настройки могут быть функции, реализующие метод обратного распространения: learngd, learngdm.

Критерием качества обучения может быть любая дифференцируемая функция: mse, msereg.

Пример:

Создать нейронную сеть, чтобы обеспечить следующее отображение последовательности входа Р в последовательность целей Т:

Р = [0 1 2 3 4 5 6 7 8 9 10];

Т = [0 1 2 3 4 3 2 1 2 3 4];

Архитектура нейронной сети: двухслойная сеть с прямой передачей сигнала; первый слой - 5 нейронов с функцией активации tansig; второй слой -1 нейрон с функцией активации purelin; диапазон изменения входа [0 10].

net = newff([0 10], [5 1], {‘tansig’ ‘purelin’});

gensim(net) % (рис.3.1).

 

Рис. 3.1. Двухслойная сеть с прямой передачей сигнала

Выполним моделирование сети и построим графики сигналов выхода и цели (рис. 3.2):

Y = sim(net, P);


plot(P, Т, Р, Y, 'о') % (рис.3.2).

Рис. 3.2. Графики сигналов выхода и цели:

---- - сигнал цели, ° - сигнал выхода

Обучим сеть в течение 50 циклов:

net.trainParam.epochs = 50;

net = train(net, Р, Т);

Характеристика точности обучения дана на рис. 3.3; установившаяся среднеквадратичная ошибка составляет приблизительно 0.02.

Рис. 3.3. Характеристика точности обучения

Выполним моделирование сформированной двухслойной сети, используя обучающую последовательность входа:

Y = sim(net, P);

plot(P, T, P, Y, 'о') % (рис.3.4).


Результаты моделирования показаны на рис. 3.4 и свидетельствуют о хорошем отображении входной последовательности в выходную.

Рис. 3.4. Отображение входной последовательности в выходную

Алгоритм:

Многослойная сеть прямой передачи сигнала включает N1 слоев с функциями взвешивания dotprod, накопления netsum и заданными пользователем функциями активации.

Первый слой характеризуется матрицей весов входа, другие слои - матрицами весов выхода предшествующего слоя; все слои имеют смещения. Выход последнего слоя является выходом сети. Веса и смещения каждого слоя инициализируются с помощью М-функции initnw.

Режим адаптации реализуется М-функцией adaptwb. Для режима обучения выбирают обучающую функцию, реализующую метод обратного распространения ошибки.

Оценка качества обучения основана на функциях оценки качества, выбираемых из списка {mae | mse | msereg | sse}.

Сопутствующие функции: NEWCF, NEWELM, SIM, INIT, ADAPT, TRAIN.

 







Дата добавления: 2014-11-10; просмотров: 1027. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия