Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение. 1 Находим значение результата косвенного измерения мощности





1 Находим значение результата косвенного измерения мощности

мВт.

2 Определяем частные случайные погрешности косвенного измерения

мВт;

мВт.

3 Вычисляем оценку среднего квадратического отклонения результата косвенного измерения

1, 67 мВт.

4 Определяем значение коэффициента Стьюдента t для заданной до-верительной вероятности Рд и числа наблюдений n.

а) При n ³ 30 значение t определяется непосредственно из таблицы 6 для заданной Рд.

б) При n < 30 предварительно должно быть определено так называемое «эффективное» число степеней свободы распределения Стьюдента, учитываемое затем при пользовании таблицей 6.

Оно определяется из выражения

,

где ni - число наблюдений при прямых измерениях xi.

- относительная оценка среднеквадратического отклонения

Для решаемой задачи

в) При получении дробного значения nэфф для нахождения коэффициента Стьюдента применяем линейную интерполяцию

,

где t1, t2 и n1, n2 - соответствующие табличные значения коэффициента Стьюдента и числа наблюдений (для заданной Рд), между которыми находится значение nэфф..

Для решаемой задачи при nэфф = 24, 16 и Рд = 0, 95 из таблицы 6 находим n1 = =24, t1 = 2, 069, n2 = 25, t2 = 2, 064, а затем вычисляем значение t = 2, 068.

5 Вычисляем доверительные границы случайной погрешности результата косвенного измерения

мВт.

6 Записываем результат измерения

мВт, Рд=0, 95.

7 Проанализируем полученные результаты с использованием критерия ничтожных погрешностей.

В соответствии с этим критерием, если частная погрешность меньше 1/3 суммарной погрешности, то она является «ничтожной» и может быть исключена из рассмотрения.

Для решаемой задачи

.

Следовательно, и не являются «ничтожными» и для повышения точности измерения Р необходимо увеличивать точность измерения как U, так и I.







Дата добавления: 2014-11-10; просмотров: 600. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия