ЦЕПИ С ГАРМОНИЧЕСКИМИ СИГНАЛАМИ
7.1. Гармонический сигнал
Гармонический сигнал записывают в виде
, (7.1)
где - амплитуда сигнала (индекс от слова «максимум»), - круговая частота, а - начальная фаза. Временная диаграмма гармонического сигнала показана на рис. 7.1.
Рис. 7.1
Амплитуда гармонического сигнала – это его максимальное значение, она измеряется в единицах сигнала (вольтах для напряжения и амперах для тока). Период сигнала (рис. 7.1) определяет циклическую частоту его повторения, , (7.2)
измеряемую в герцах (Гц). Ее физический смысл – число периодов колебаний в секунду. Аргумент косинуса в (7.1) вида
(7.3)
называют полной фазой колебания, она пропорциональна текущему времени и измеряется в радианах или градусах. Круговая частота равна
(7.4)
и представляет собой число радиан, на которое изменяется полная фаза колебания в единицу времени (1 с). При полная фаза равна , поэтому параметр называют начальной фазой гармонического сигнала. Она измеряется в радианах или градусах. Так как период функции равен или 3600, то начальная фаза оказывается многозначной величиной. Например, значения начальной фазы 300 и (300+3600)=3900, а также (300-3600)=-3300 оказываются эквивалентными. Для устранения неоднозначности договариваются, что значения начальной фазы должны находиться, например, в интервале от 0 до , или от до (аналогичные границы могут быть заданы в градусах). Начальная фаза связана со смещением гармонического сигнала во времени на величину относительно функции , как показано на рис. 7.1. Функция смещена влево относительно , а - вправо. Положительные значения отсчитываются в сторону увеличения , а отрицательные – наоборот. Из (7.1) можно записать
, (7.5) где смещение во времени равно
. (7.6)
Тогда для начальной фазы получим
. (7.7)
Как видно, начальная фаза определяется временным сдвигом гармонического сигнала относительно функции . При сигнал смещается вправо (позднее сигнала ) по оси времени, при этом его начальная фаза , а если , то временная диаграмма смещается влево (раньше ) по оси времени, а . Величина начальной фазы зависит от начала отсчета времени (положения точки ). При смещении начала отсчета времени изменяется и начальная фаза. Применительно к двум гармоническим сигналам и с разными начальными фазами и вводится в рассмотрение сдвиг фаз между первым и вторым сигналами,
. (7.8)
На рис. 7.2 показаны два гармонических сигнала с начальными фазами и , причем и . В этом случае говорят, что первый сигнал опережает по фазе второй или второй сигнал отстает по фазе от первого. Сдвиг фаз связан со смещением сигналов во времени , (7.9) положительные значения временного сдвига отсчитываются в направлении оси времени. Гармоническое колебание может быть задано в нетипичной форме, которую необходимо преобразовать к виду (7.1), иначе начальная фаза Рис. 7.2 оказывается неопреде- ленной. Примеры преобразования показаны в табл. 7.1.
Таблица 7.1.
7.2. Схемотехническое моделирование
Рассмотрим цепь, показанную на рис. 7.3 при e(t) = E sin(wt), E = 1 В, Re = 1 кОм, f = 50 кГц, рад/с. . Рис. 7.3. Построим модель цепи в программе MicroCAP, показанную на рис. 7.4.
Рис. 7.4.
На рис. 7.5 показаны временные диаграммы напряжений источника e(t) (кривая с самой большой амплитудой), напряжения в узле 2 (на емкости и сопротивлении ) и напряжения на сопротивлении .
Рис. 7.6.
По кривым на рис. 7.5 определяются амплитуды напряжений и их сдвиги во времени относительно напряжения источника, значения которых приведены в табл. 7.2. Начальные фазы связаны со сдвигом во времени соотношением ,
результаты расчетов приведены в табл. 7.2.
Таблица 7.2
Уравнение второго закона Кирхгофа имеет вид
.
Обозначим левую часть уравнения
.
При точных расчетах выполняется условие , а при приближенных (округленных) результатах моделирования появляется погрешность , которую можно представить графически. Программа расчета в программе MathCAD показана на рис. 7.6, а результаты - на рис. 7.7. Аналогичные результаты необходимо получить для токов в элементах цепи и проверить выполнение первого закона Кирхгофа. Требуется исследовать фазовые соотношения между токами и напряжениями в элементах цепи. Рис. 7.6.
Рис. 7.7.
Как видно, временные диаграммы напряжений в верхней части рис.7.7 совпадают с результатами моделирования на рис. 7.6. Из графика в нижней части рис. 7.7 следует, что погрешность выполнения второго закона Кирхгофа меняется по гармоническому закону с амплитудой 0, 06 В (6 % от амплитуды напряжения источника), что обусловлено погрешностями измерения амплитуд и начальных фаз напряжений по результатам моделирования.
|