Составление рядов распределения и их графические представления
В процессе наблюдения или измерения какого-либо показателя получают ряд чисел. Численные результаты подразделяют на дискретные и непрерывные. К дискретным относят число подтягиваний на перекладине, число попыток и т.д., то есть результаты, выражаемые целым числом; к непрерывным – время прохождения дистанции, время реакции, скорость движения и т.п., то есть результаты, которые могут выражаться дробным числом, в частности, бесконечной дробью. Генеральной совокупностью называется совокупность всех объектов, характеристики которых требуется определить. Выборочной совокупностью, или просто выборкой, называется часть объектов, определённым образом выбранных из общей генеральной совокупности. Способы отбора: - случайный; - по определённой схеме; - смешанный (сочетание первого и второго способов). Например, длина тела студентов какого-либо вуза Республики Беларусь – выборочная совокупность, а длина тела студентов всех вузов – генеральная; в то же время длина тела студентов Беларуси – выборка по отношению к генеральной совокупности – всем студентам земного шара. Генеральную совокупность мысленно можно представить так: это все объекты наблюдения (например, спортсмены), которые обладают теми же свойствами, что и объекты выборки. В самом общем случае под генеральной совокупностью понимают совокупность всех мыслимых значений наблюдений, которые могли бы быть сделанными при данном комплексе условий. Один из центральных вопросов статистики: как обобщить результаты, полученные на выборке, на всей генеральной совокупности? Предположим, что исследователь проводил эксперименты на группе тяжелоатлетов III разряда и нашел, что один из методов тренировки лучше, чем другие. Можно ли распространить его данные на всех тяжелоатлетов III разряда, или же сделанные им выводы справедливы только для той группы спортсменов, в которой проводился эксперимент? Если исследованием охвачена вся генеральная совокупность, оно называется сплошным. Например, если кому-либо удалось обследовать всех сильнейших спортсменов мира в каком-либо виде спорта, значит. проведено сплошное исследование. Все остальные исследования называются выборочными. Одной из основных характеристик выборки является ее объем – n, который определяется числом объектов наблюдения, например, спортсменов в данном исследовании. Как проводится упорядочение и анализ выборки? Предположим, что у баскетболистов БГУФК измерили силу левой кисти. Результат измерений в килограммах (n = 100) представлен в таблице 2.1. Таблица 2.1 – Пример выборочных результатов (n = 100)
В этой таблице числа записаны в той последовательности, в какой проходили измерения, т.е. случайным образом. Такие данные представляют неупорядоченную выборку. Третья строка – выборка упорядоченная, точнее – ранжированная. Ранжированием называют расстановку результатов измерений в порядке возрастания или убывания. Выборки большого объема разбивают на интервалы. В простейшем случае их может быть два. Например, когда необходимо отобрать худших или лучших спортсменов. Однако, для получения достаточно точных результатов число интервалов (его обозначают буквой k) должно быть больше. В зависимости от объёма выборки количество интервалов устанавливают, придерживаясь формулы американского статистика Стерджесса: На основании формулы Стерждесса требуемое число интервалов для разного объёма сведено в таблицу 2.2. Таблица 2.2 – Рекомендуемое число интервалов для выборки разного объема
Тогда величина, или шаг интервала, определяется: (2.1) где – максимальный результат измерений в выборке, – минимальный результат. В рассматриваемом примере (табл. 2.1) для n = 100 принимаем k = 8. Шаг интервала кг. На основе значений k и h заполняют таблицу 2.3. Таблица 2.3 – Вариационный ряд измерений
В столбец 1 записываем порядковые номера интервалов. Столбец 2 получают следующим образом: выбирают значение x (нижнюю границу 1-го интервала) равную (из табл. 2.1) – 36+5 = 41; получают верхнюю границу 1-го интервала (она же является нижней границей 2-го интервала); далее 41+5= 46 и т.д. Столбец 3 определяет частоту, или «встречаемость», значений выборки в каждом интервале. Она определяется числом результатов измерений, попавших в данный интервал. Под частостью понимают отношение частоты к общему числу элементов выборки (к ее объему). Сумма частот всех интервалов всегда равна объему выборок, а сумма частостей всех интервалов равна единице. Из этой таблицы можно определить, как часто каждое значение результатов измерений встречается в каждой выборке. Распределение, представленное в столбцах 2 и 3, в статистике называют вариационным рядом. Анализ вариационных рядов упрощается при графическом представлении. Рассмотрим основные графики вариационного ряда. 1. Полигон распределения (рис. 2.1). График строится в прямоугольной системе координат. Величины измеряемого показателя откладываются на оси абсцисс, частоты (частости) – на оси ординат. Рисунок 2.1 – Полигон распределения (на оси абсцисс – середины интервалов, 2. Гистограмма распределения (рис. 2.2). График строится аналогично полигону распределения, однако на оси абсцисс откладываются не точки (середины интервалов), а отрезки, отображающие интервал, и вместо ординат, соответствующих частотам или частостям отдельных вариантов, строят прямоугольники с высотой, пропорциональной частотам и интервалам. 36 41 46 51 56 61 66 71 76
Рисунок 2.2 – Гистограмма (на оси абсцисс – интервалы, на оси ординат – частоты)
|