Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Составление рядов распределения и их графические представления





В процессе наблюдения или измерения какого-либо показателя получают ряд чисел. Численные результаты подразделяют на дискретные и непрерывные. К дискретным относят число подтягиваний на перекладине, число попыток и т.д., то есть результаты, выражаемые целым числом; к непрерывным – время прохождения дистанции, время реакции, скорость движения и т.п., то есть результаты, которые могут выражаться дробным числом, в частности, бесконечной дробью.

Генеральной совокупностью называется совокупность всех объектов, характеристики которых требуется определить. Выборочной совокупностью, или просто выборкой, называется часть объектов, определённым образом выбранных из общей генеральной совокупности.

Способы отбора:

- случайный;

- по определённой схеме;

- смешанный (сочетание первого и второго способов).

Например, длина тела студентов какого-либо вуза Республики Беларусь – выборочная совокупность, а длина тела студентов всех вузов – генеральная; в то же время длина тела студентов Беларуси – выборка по отношению к генеральной совокупности – всем студентам земного шара.

Генеральную совокупность мысленно можно представить так: это все объекты наблюдения (например, спортсмены), которые обладают теми же свойствами, что и объекты выборки. В самом общем случае под генеральной совокупностью понимают совокупность всех мыслимых значений наблюдений, которые могли бы быть сделанными при данном комплексе условий.

Один из центральных вопросов статистики: как обобщить результаты, полученные на выборке, на всей генеральной совокупности?

Предположим, что исследователь проводил эксперименты на группе тяжелоатлетов III разряда и нашел, что один из методов тренировки лучше, чем другие. Можно ли распространить его данные на всех тяжелоатлетов III разряда, или же сделанные им выводы справедливы только для той группы спортсменов, в которой проводился эксперимент? Если исследованием охвачена вся генеральная совокупность, оно называется сплошным. Например, если кому-либо удалось обследовать всех сильнейших спортсменов мира в каком-либо виде спорта, значит. проведено сплошное исследование. Все остальные исследования называются выборочными. Одной из основных характеристик выборки является ее объемn, который определяется числом объектов наблюдения, например, спортсменов в данном исследовании. Как проводится упорядочение и анализ выборки? Предположим, что у баскетболистов БГУФК измерили силу левой кисти. Результат измерений в килограммах (n = 100) представлен в таблице 2.1.

Таблица 2.1 – Пример выборочных результатов (n = 100)

№ п/п             ...    
x, кг             ...    
x, кг (ранжиров.)             ...    

 

В этой таблице числа записаны в той последовательности, в какой проходили измерения, т.е. случайным образом. Такие данные представляют неупорядоченную выборку. Третья строка – выборка упорядоченная, точнее – ранжированная. Ранжированием называют расстановку результатов измерений в порядке возрастания или убывания.

Выборки большого объема разбивают на интервалы. В простейшем случае их может быть два. Например, когда необходимо отобрать худших или лучших спортсменов. Однако, для получения достаточно точных результатов число интервалов (его обозначают буквой k) должно быть больше. В зависимости от объёма выборки количество интервалов устанавливают, придерживаясь формулы американского статистика Стерджесса:

На основании формулы Стерждесса требуемое число интервалов для разного объёма сведено в таблицу 2.2.

Таблица 2.2 – Рекомендуемое число интервалов для выборки разного объема

Объем выборки (n) 10 – 20 30 – 50 60 – 90 100 – 200 300 – 400
Число интервалов (k)   5 – 6      

Тогда величина, или шаг интервала, определяется:

(2.1)

где – максимальный результат измерений в выборке, – минимальный результат. В рассматриваемом примере (табл. 2.1) для n = 100 принимаем k = 8. Шаг интервала

кг.

На основе значений k и h заполняют таблицу 2.3.

Таблица 2.3 – Вариационный ряд измерений

     
№ интервала Граница интервала Частота
  36 – 41  
  41 – 46  
  46 – 51  
  51 – 56  
  56 – 61  
  61 – 66  
  66 – 71  
  71 – 76  

 

В столбец 1 записываем порядковые номера интервалов.

Столбец 2 получают следующим образом: выбирают значение x (нижнюю границу 1-го интервала) равную (из табл. 2.1) – 36+5 = 41; получают верхнюю границу 1-го интервала (она же является нижней границей 2-го интервала); далее 41+5= 46 и т.д.

Столбец 3 определяет частоту, или «встречаемость», значений выборки в каждом интервале. Она определяется числом результатов измерений, попавших в данный интервал. Под частостью понимают отношение частоты к общему числу элементов выборки (к ее объему). Сумма частот всех интервалов всегда равна объему выборок, а сумма частостей всех интервалов равна единице.

Из этой таблицы можно определить, как часто каждое значение результатов измерений встречается в каждой выборке. Распределение, представленное в столбцах 2 и 3, в статистике называют вариационным рядом.

Анализ вариационных рядов упрощается при графическом представлении. Рассмотрим основные графики вариационного ряда.

1. Полигон распределения (рис. 2.1). График строится в прямоугольной системе координат. Величины измеряемого показателя откладываются на оси абсцисс, частоты (частости) – на оси ординат.

Рисунок 2.1 – Полигон распределения (на оси абсцисс – середины интервалов,
на оси ординат – частоты)

2. Гистограмма распределения (рис. 2.2). График строится аналогично полигону распределения, однако на оси абсцисс откладываются не точки (середины интервалов), а отрезки, отображающие интервал, и вместо ординат, соответствующих частотам или частостям отдельных вариантов, строят прямоугольники с высотой, пропорциональной частотам и интервалам.

36 41 46 51 56 61 66 71 76

 

Рисунок 2.2 – Гистограмма (на оси абсцисс – интервалы, на оси ординат – частоты)







Дата добавления: 2014-11-10; просмотров: 648. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Studopedia.info - Студопедия - 2014-2025 год . (0.007 сек.) русская версия | украинская версия