Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

СТАНДАРТНАЯ ОШИБКА СРЕДНЕГО АРИФМЕТИЧЕСКОГО





Чтобы судить о том, насколько точно проведенные измерения отражают состав генеральной совокупности, необходимо вычислить стандартную ошибку средней арифметической выборочной совокупности.

Стандартная ошибка средней арифметической характеризует степень отклонения выборочной средней арифметической от средней арифметической генеральной совокупности.

Стандартная ошибка средней арифметической вычисляется по формуле:

,

где s – стандартное отклонение результатов измерений, n – объем выборки.

Зачастую мы имеем дело с одной случайной выборкой и с одной полученной при ее обработке выборочной средней. Задача заключается в суждении о величине неизвестной генеральной средней по полученной неточной величине случайной выборочной средней.

Вычислим среднюю ошибку найденного выборочного среднего значения роста:

195 см; σ = 8, 8 см; см.

2, 8 см составляют не максимальную, а среднюю возможную ошибку среднего. Отдельные выборочные средние могут отклоняться от генеральной как больше, так и меньше, чем на 2, 8 см.

Каковы же пределы возможных ошибок случайной выборки, какова ее максимальная ошибка? Величина максимальной ошибки зависит от величины средней ошибки и вычисляется по формуле

.

При объеме выборки n = 10:

.

Все случайные выборочные средние, которые могут быть получены в подобных опытах (в том числе и фактически полученная выборочная средняя = 195 см), при своем варьировании около неизвестного генерального среднего в подавляющем количестве группируются около него так, что лишь ничтожный процент их отклоняется от генеральной средней более, чем на величину максимальной ошибки.

Другими словами, генеральная средняя определяется как

.

Эти пределы колебаний значительно сужаются, если средняя ошибка уменьшается благодаря увеличению численности выборки.

Искомая генеральная средняя лежит между и . Таким образом, при высокой точности выполнения эксперимента и достаточно большом числе измерений можно определить среднюю арифметическую бесконечно большого числа экспериментов.

До сих пор мы определяли максимальную ошибку выборочной средней, исходя из того, что все остальные показатели известны. Если же мы хотим достичь определенной точности, определенного приближения к генеральной средней, в этом случае встает вопрос о численности выборки (о том, сколько измерений, опытов необходимо провести).

Допустим, что максимальная ошибка должна быть равна 5 см. Сколько человек надо обследовать (измерить) в нашем случае?

.

Следовательно, мы должны провести измерения роста у 36 баскетболистов высокого класса.

 







Дата добавления: 2014-11-10; просмотров: 718. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия