Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Корреляционное поле. Анализ взаимосвязи начинается с графического представления результатов измерений в прямоугольной системе координат





Анализ взаимосвязи начинается с графического представления результатов измерений в прямоугольной системе координат. Предположим, что у шести испытуемых зарегистрирован такой показатель, как число подтягиваний на перекладине, до начала подготовительного периода тренировки (X) и после его окончания (Y). Запишем результаты измерений:

№ испытуемого X Y
     
     
     
     
     
     

 

Для этих результатов построим график, на оси абсцисс которого отложим результаты X, а на оси ординат – результаты Y. Таким образом, каждая пара результатов в прямоугольной системе координат будет отображаться точкой (рис. 3.1).

Рисунок 3.1 – Корреляционное поле (линейная зависимость)

Такая графическая зависимость называется диаграммой рассеивания или корреляционным полем.

Визуальный анализ графика позволяет выявить форму зависимости (по крайней мере, сделать предположение). В данном случае эта форма близка к обычной геометрической фигуре – эллипсу. Такую форму мы будем называть линейной зависимостью или линейной формой взаимосвязи.

Однако на практике можно встретить и иную форму взаимосвязи (например, рис. 3.2). Эта зависимость, экспериментально полученная при подачах в теннисе, является характерной для нелинейной формы взаимосвязи, или нелинейной зависимости.

 

Рисунок 3.2 – Корреляционное поле (нелинейная зависимость): по абсциссе – скорость ракетки, по ординате – скорость вылета мяча

Таким образом, визуальный анализ корреляционного поля позволяет выявить форму статистической зависимости – линейную или нелинейную. Иными словами, если статистическая связь между явлениями выражается уравнением прямой линии , то её называют линейной связью, если уравнением кривой ( - парабола; - гипербола и т.д.), то такую связь называют нелинейной. Это имеет существенное значение для следующего шага в анализе – выбора и вычисления соответствующего коэффициента корреляции.

 







Дата добавления: 2014-11-10; просмотров: 572. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

Studopedia.info - Студопедия - 2014-2026 год . (0.011 сек.) русская версия | украинская версия