Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Оценка тесноты взаимосвязи





Для оценки тесноты линейной взаимосвязи в корреляционном анализе используется значение (абсолютная величина) специального показателя – коэффициента корреляции. Абсолютное значение (модуль числа) любого коэффициента корреляции лежит в пределах от 0 до 1. Объясняют (интерпретируют) абсолютное значение коэффициента корреляции следующим образом:

– коэффициент корреляции равен 1, 00 (функциональная взаимосвязь, т.е. значению одного показателя соответствует только одно значение другого показателя);

– коэффициент корреляции равен 0, 99 – 0, 70 (сильная статистическая взаимосвязь);

– коэффициент корреляции равен 0, 69 – 0, 50 (средняя статистическая взаимосвязь);

– коэффициент корреляции равен 0, 49 – 0, 20 (слабая статистическая взаимосвязь);

– коэффициент корреляции равен 0, 19 – 0, 01 (очень слабая статистическая взаимосвязь);

– коэффициент корреляции равен 0, 00 (корреляция не обнаружена).

На рисунках 3.3 и 3.4 приведены примеры двух различных зависимостей.

 

Рисунок 3.3 – Зависимость между становой силой и результатами в толкании ядра (n = 80). Пример очень слабой корреляционной зависимости. Коэффициент корреляции равен 0, 09. По абсциссе – становая сила, по ординате – результат толкания ядра

 

Таким образом, значение (абсолютная величина) коэффициента корреляции, изменяясь в пределах от 0 до 1, позволяет оценивать тесноту взаимосвязи. Кроме тесноты нас будет интересовать и направленность взаимосвязи.

 

 

Рисунок 3.4 – Зависимость между результатами в толкании ядра разного веса (n = 80). Пример сильной корреляционной зависимости. Коэффициент корреляции равен 0, 892. По абсциссе – результат толкания ядра 5 кг,
по ординате – результат толкания ядра 3 кг

 

 

 

Рисунок 3.5 – Зависимость между результатами в беге на 100 м и прыжками в длину с разбега (n = 50). Пример отрицательной взаимосвязи: коэффициент корреляции равен –0, 628. С уменьшением времени бега (при увеличении скорости) растут результаты в прыжках. По абсциссе – результаты в беге на 100 м, по ординате – в прыжках в длину

 







Дата добавления: 2014-11-10; просмотров: 521. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия