Диэлектрические потери
Диэлектрические потери ― это электрическая мощность, поглощаемая диэлектриком при работе в электрическом поле. Эта мощность превращается в теплоту и идёт на нагрев диэлектрика. Потери складываются из нескольких составляющих: – Потери в соответствии с законом Джоуля -Ленца при прохождении постоянного сквозного тока утечки через сопротивление изоляции , где U ― напряжение; I ― ток утечки; R из ― сопротивление изоляции. – Потери на переполяризацию диэлектрика (релаксационные потери) в переменном электрическом поле и миграционные потери, возникающие в изолированных друг от друга посторонних проводящих или полупроводящих включениях углерода, оксидов железа и т.д. Это собственно диэлектрические потери. – Ионизационные потери, связанные с ионизацией газообразных диэлектриков при наличии газообразных включений в твёрдых телах. – Резонансные потери энергии в диэлектриках на частотах оптического диапазона, близких к частотам собственных колебаний электронов и ионов. Например, твёрдые диэлектрики со слабо связанными ионами (стекла) имеют ионный резонанс в СВЧ диапазоне. Для количественной оценки потерь энергии в диэлектрике пользуются эквивалентными схемами. Реальный конденсатор заменяется идеальной ёмкостью без потерь и активным сопротивлением, соединённых последовательно или параллельно (рис. 4.7). Величина активного сопротивления R схемы замещения выбирается такой, чтобы мощность, выделяющаяся в сопротивлении R, была равна мощности диэлектрических потерь в диэлектрике.
Рис.4.7.. Схема замещения (а) и векторная диаграмма токов (б) в диэлектрике с потерями: Iа – активная составляющая тока утечки; IС – ёмкостная составляющая тока утечки; δ – угол диэлектрических потерь; φ – угол сдвига фаз между векторами тока и напряжения; δ + φ = π /2.
В чисто ёмкостной цепи ток опережает напряжение по фазе на угол , поэтому в соответствии с векторной диаграммой тока (рис.4.6 б) полные потери составляют: , где ; ; ― характеризует уровень диэлектрических потерь; ― добротность изоляции. Диэлектрические потери, отнесённые к единице объёма диэлектрика, называют удельными потерями. Их можно рассчитать по формуле , где Е ― напряжённость электрического поля в диэлектрике площадью S и длиной h. ― коэффициент диэлектрических потерь. Значение для лучших электроизоляционных материалов – применяемых в технике высоких частот и напряжений составляет 10-5÷ 10-4.
4.1.6. Пробой диэлектриков. При достижении некоторого критического значения напряжения диэлектрик теряет свои изоляционные свойства, происходит пробой, представляющий собой разрушение диэлектрика. Пробивное напряжение U пр зависит от толщины изоляции. Более точно пробивные свойства характеризуются электрической прочностью диэлектрика Е пр , где h ― толщина диэлектрика, м. Для надёжной работы электротехнического устройства рабочее напряжение его изоляции U раб. должно быть существенно меньше пробивного напряжения. Различают несколько видов пробоя: – Электрический пробой обусловлен разрушением структуры диэлектрика силами электрического поля. Время его развития – микросекунды. – Тепловой пробой связан с нагревом изоляции и снижением электрической прочности. Нагрев вызывается диэлектрическими потерями возрастающими по мере ухудшения изоляционных свойств. Время развития пробоя от долей секунд до минут. – Электрохимический пробой связан с химическими изменениями диэлектрика в электрическом поле. Из-за процессов окисления, электролиза, прохождения токов утечки. Процесс требует много времени, длится часами. – Ионизационный пробой обусловлен ионизацией включений, нагревом и разрушением диэлектрика, что постепенно снижает его электрическую прочность.
|