Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Однородные координаты





Преобразования переноса, масштабирования и поворота записываются в матричной форме в виде

,

,

.

Очевидно, что перенос, в отличие от масштабирования и поворота, реализуется с помощью сложения. Это обусловлено тем, что вводить константы переноса внутрь структуры общей матрицы размера 2х2 не представляется возможным. Желательным является представление преобразований в единой форме – с помощью умножения матриц. Эту проблему можно решить за счет введения третьей компоненты в векторы точек и , т.е. представляя их в виде и . Матрица преобразования после этого становится матрицей размера 3х3, например:

.

Используя эту матрицу, получаем преобразованный вектор [ х* у* 1]. Добавление третьего элемента к вектору положения и третьего столбца к матрице преобразования позволяет выполнить смещение вектора положения. Третий элемент здесь можно рассматривать как дополнительную координату вектора положения. Итак, вектор положения [ х у 1] при воздействии на него матрицы 3х3 становится вектором положения в общем случае вида [ X Y Н]. Представленное преобразование было выполнено так, что [X Y Н ]= [ х* у* 1].

Преобразование, имеющее место в трехмерном пространстве, в нашем случае ограничено плоскостью, поскольку H = 1. Если, однако, третий столбец матрицы преобразования Т размера 3х3 отличен от 0, то в результате матричного преобразования получим [ х у 1] × Т = [ Х Y Н ], где Н ¹ 1.

Плоскость, в которой теперь лежит преобразованный вектор положения, находится в трехмерном пространстве.

Преобразованные обычные координаты получаются за счет нормализации однородных координат, т. е.

и .

Геометрически все преобразования х и у происходят в плоскости Н= 1 после нормализации преобразованных однородных координат.

Преимущество введения однородных координат проявляется при использовании матрицы преобразований общего вида порядка 3х3

,

с помощью которой можно выполнять и другие преобразования, такие как смещение, операции изменения масштаба и сдвига, обусловленные матричными элементами а, b, с и d. Указанные операции рассмотрены ранее.

Основная матрица преобразования размера 3х3 для двумерных однородных координат может быть подразделена на четыре части:

.

Как мы видим, а, b, с и d осуществляют изменение масштаба, сдвиг и вращение; т и п выполняют смещение, а р и q – получение проекций. Оставшаяся часть матрицы, элемент s, производит полное изменение масштаба. Чтобы показать это, рассмотрим преобразование

Здесь Х = х, Y = у, а Н = s. Это дает х * = x / s и y * == y / s. В результате преобразования [ х у 1 ] —> [ x / s y / s 1] имеет место однородное изменение масштаба вектора положения. При s < 1 происходит увеличение, а при s > 1 уменьшение масштаба.







Дата добавления: 2014-11-10; просмотров: 603. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия