Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Determining the internal forces by the method of sections. Stresses





The method of sections consists in that a body is cut by an imagining plane into two parts, one part is removed, and internal forces acting before the cutting are applied to the section of the remained part; the remaining portion of the body is considered as a separate body being in equilibrium under the external and internal forces applied to this section.

The method of sections is based on Newtons third law.


remaining portion
removed portion
F2
F1
F1
F2
m1
m1
a     a
y a   a
m2
F4
F3
Q
a Fr
N
Mb
z
M¢ b
F¢ r
a     a
F4
m2
Q
F3

 

 


Fig. 1.1.

 

We can find the resultant of these forces by applying the equilibrium condition to the remaining body portion.

The bar is the basic calculating object in the strength of materials. Let us consider the static resultant of the internal forces in a bar cross section. Cut a bar by the cross section a-a and consider the equilibrium of its left portion (Fig.1.1).

The resultant force vector Fr applied in the centroid of the area and the resultant moment Mr = Mb (they balance the external force plane system applied to the remaining beam portion) are the static resultants of internal forces in the general case which act at the section a-a, if the external forces, applied to the bar, are in one plane.

Let us decompose the resultant force vector into the component N directed along the bar axis and the component Q perpendicular to this axis i.e. the axis lying at the cross-section plane.

These components of the resultant force vector and the resultant moment are called internal forces factors acting at a cross section of a bar. The component N is called the axial force, the component Q is called the shearing force and the couple forces with Mb are the bending moment.

Statics gives three eguations for the remaining bar portion to determine three pointed internal forces, namely:

 

 

(Z – is the axis always directed along the bar).

If the external forces acting at the bar do not lie in the same plane i.e. they form the spatial force system, then in the general case there arise six internal forces factors in the cross section. To determine these statics gives six equilibrium equations (Fig.1.2):

 

 

 

Mby
Mt
x
N
z
Mbx
Qx
Qy
y

 

Fig. 1.2.

 

The six internal forces factors arising at the bar cross section in a most general case are given the following names: N is an axial force; Qx, Qy are shearing forces; Mt is a twisting moment; Mbx, Mby are bending moments.

There arise different internal forces factors at the bar cross section under different deformations. Consider the following special cases:

1. There is only an axial force N at the section. In this case we have a tension deformation (if the force is directed from the section) or a compression deformation (if the force is directed to the section).

2. There is only a shearing force Q, in this case we have a shear deformation.

3. There is only a twisting moment Mt. In this case we have a torsional deformation.

4. There is only a bending moment Mb. In this case we have a pure bending deformation. When a section has a simultaneous bending moment Mb and a simultaneous shearing force Q, the bend is called cross-bending.

5. When a section has some internal forces factors simultaneously (for example, a bending and a twisting moments or a bending moment and an axial force), then there is a combination of the basic deformations (combined stress).

The stress is one of basic concepts of the strength of materials.







Дата добавления: 2014-11-10; просмотров: 709. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия