Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

I. Проведение статистической обработки результатов исследования





Рассмотрим краткую схему обработки полученной цифровой информации. Например, исследователь провел изучение каких-то показателей у здоровых людей и больных. Что делать с этими цифрами дальше?

Следует помнить, что математическая статистика содержит в себе аппарат, позволяющий исследователю осуществить перевод количества в новое качество, т.е. на основании полученных данных найти у обследованного определенное свойство. Можно получить качественные и количественные характеристики этого свойства и, наконец, оценить как достоверность выдвигаемой в процессе исследования гипотезы, так и достоверность проведенных вычислений.

1. Вначале необходимо оценить полученные показатели. Среди цифр одного ряда (выборки) часто попадаются так называемые выскакивающие значения. Чем меньше объём выборки, т.е. чем меньше количество показателей имеется в распоряжении исследователя, тем больше искажения будет вносить эта " выскакивающая" величина на истинное значение искомой величины.

2. Затем исследователя, как правило, интересует среднее значение полученных показателей (оно обозначается ). Чем больше число наблюдений однородных признаков, тем ближе среднее значение к истинному.

Как правило, в биологических и медицинских исследованиях, кроме средней величины, обычно вычисляют стандартную ошибку средней арифметической (Sx), показывающую, на какую величину может отклоняться средняя величина (в ту или другую сторону) у 95% (или у другого количества в зависимости от выбранной степени достоверности) всех показателей данной выборки.

3. Затем обычно проводится так называемый целевой статистический анализ. Здесь уместно определить вид распределения. Существует несколько видов статистических распределений случайных величин. Назовем основные из них:

Нормальное распределение, когда переменная величина изменяется непрерывно.

Биноминальное распределение, когда переменная величина может принимать только дискретные значения, при этом некоторое событие может только быть или не быть.

Распределение Пуассона, когда рассматриваются очень редкие, маловероятные события.

Равномерное распределение, когда вероятно появление погрешности любой величины внутри некоторого интервала, а за его пределами вероятность появления погрешности равна нулю.

Для большого числа встречающихся на практике случайных величин можно ожидать распределение по нормальному закону. При проверке распределения на нормальность используют различные критерии (см. Гл. III в данном руководстве).

Если имеется две группы показателей, например у здоровых и больных, сравнивают средние арифметические и стандартные ошибки этих двух выборок, при этом изучают степень достоверности различий. Можно использовать для этой цели различные критерии. Если установлено, что данное распределение не является нормальным, можно использовать различные непараметрические методы анализа.

4. Далее можно определить наличие связей между различными характеристиками одного объекта. Количественной характеристикой тесноты связи разнородных признаков может служить коэффициент корреляции. В случае, когда связь между признаками имеет сложный вид, можно рассчитать показатели коэффициентов нелинейной корреляции.

Исследователю, постоянно занимающемуся выявлением связей между различными признаками, имеет смысл включить корреляционный анализ в предварительную обработку информации. Если связь между признаками четко выражена, можно определить вид этой связи, т.е. построить линию, описывающую поведение одного из признаков при изменении сопряженного с ним признака, - построить линию регрессии.

По линии регрессии затем можно предсказать поведение одного параметра при изменении другого.

5. Дисперсионный анализ позволит определить влияние какого-либо фактора на результат в сравнении с влиянием других факторов, действующих одновременно.







Дата добавления: 2014-11-12; просмотров: 676. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия