Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

II. Нормальный закон распределения





Результаты, полученные при измерении той или иной величины, нельзя принять из-за ряда случайностей за достоверные (действительные значения измеряемых величин). Тогда приходится говорить о вероятности того или иного значения этих величин и определить их. Вероятность события - это количественная оценка объективной возможности появления данного события. Вероятность достоверных событий равна 1. Например, после ночи наступит утро. Вероятность невозможных событий равна 0. Случайные события имеют вероятность (p) больше 0, но меньше 1, т.е. 0 £ p £ 1.

Если число всех равновероятных событий n и появление желательного результата возможно m раз, то p* = m/n (частота появления события).

Как было показано Я. Бернулли, частота появления события будет сколь угодно мало отличаться от вероятности при большом числе n, т.е.

p = p*, p - статистическая вероятность события.

Всякое соотношение, устанавливающее связь между возможными значениями случайной величины и соответствующими им вероятностями, есть закон распределения случайной величины.

Закон распределения случайной величины может быть задан в разных формах:

а) ряд распределения (для дискретных величин);

б) функция распределения;

в) кривая распределения (для непрерывных величин).

 

Кривая нормального распределения была дана немецким математиком К.Ф.Гауссом в 1821 г.:

(1)

где у(xi) - ордината кривой нормального распределения (плотность вероятности случайной величины);

x - значение случайной величины;

m - “истинное” значение величины (среднее арифметическое или математическое ожидание случайной величины);

s - среднее квадратичное отклонение;

e - основание натуральных логарифмов (e=2.7183).

а) Основные свойства кривой Гаусса.

- Кривая имеет колоколообразную форму. На некотором расстоянии от середины симметрично по обе стороны ее находятся точки перегиба (Рис.1).

Характеристиками кривой служат высота кривой и расстояния от оси ординат до точек перегиба.

- Вершина кривой соответствует наибольшему числу повторений, т.е. наибольшей вероятности, соответствующей погрешности =0.

- При увеличении абсолютной погрешности вероятность ее появления уменьшается. Кривая асимптотически приближается к оси абсцисс; следовательно, появление больших погрешностей маловероятно.

- Кривая нормального распределения симметрична относительно вертикальной оси, проходящей через максимум кривой, т.е. одинаковые погрешности, но с разными знаками имеют одинаковую вероятность.

Из формулы (1) видно, что центр рассеивания x = m является центром симметрии и, если изменять центр рассеивания m, кривая распределения будет смещаться вдоль оси абсцисс, не изменяя своей формы (Рис.2).

- параметр s определяет саму форму кривой распределения. Максимум функции нормального распределения при x=m равен:

(2)

т.е. обратно пропорционален величине s. Площадь, ограниченная кривой распределения всегда равна 1:

(3)

поскольку (3) выражает вероятность того, что случайная величина примет какое-нибудь значение из интервала (-¥, +¥) - достоверное событие. Поэтому при увеличении кривая распределения становится пологой, т.е. сжимается к оси Ох и растягивается вдоль неё (Рис.3).

 

 

б) Правила обработки результатов измерений.

 

Указанные правила можно применять при нормальном распределении результатов измерений или мало отличающемся от него.

1) Определяют среднее арифметическое значение измеряемой величины:

.

2) Находят абсолютные погрешности отдельных измерений:

3) Вычисляют среднюю абсолютную погрешность отдельных измерений:

4) Вычисляют среднюю квадратическую погрешность отдельных измерений:

s=1.253 x,

или .

5) Отбрасывают промахи, если Dxi> 3s.

6) Определяют среднюю квадратическую погрешность среднего значения:

s = 1.253å Dxi/n = 1.253 ,

или

s = s/ = .

7) По числу наблюдений n< 30 и выбранной доверительной вероятности a по таблицам Стьюдента (см. приложение) определяют коэффициент Стьюдента ta, n.

8) Записывают величину доверительного интервала для среднего значения измеряемой величины:

Dx = ta, n∙ s.

9) Записывают результат измерений:

x = ±Dx

10) Определяют относительную погрешность:

E=







Дата добавления: 2014-11-12; просмотров: 770. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия