Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

СВЕДЕНИЕ ФИГУР СИЛЛОГИЗМА





Мы видели, что существуют различные фигуры и модусы сил­логизмов. Спрашивается, равноценны ли они? Всё ли равно, если мы будем умозаключать по фигуре 1, 2 или 3? Оказывается, нет, и именно предпочтение следует отдать модусам фигуры 1. Дока­зательства по этой фигуре имеют особенно очевидный характер.

Для проверки истинности силлогистического вывода, выра­женного при помощи какого-либо модуса той или иной фигуры, следует этот модус свести к какому-либо модусу фигуры 1, и именно потому, что очевидность заключения по фигуре 1 можно доказать, показав применимость аксиомы силлогизма к моду­сам фигуры 2. В символических обозначениях модусов, которые мы привели в предыдущей главе, есть указание на то, каким об­разом должно происходить это сведение к модусам фигуры 1.

Буква s показывает, что суждение, обозначенное предше­ствующей ему гласной, должно подвергнуться чистому обращению (conversio simplex).

Буква р показывает, что суждение, обозначенное предше­ствующей ему гласной, нужно обращать per accidens, или посредством ограничения.

Буква m показывает, что посылки силлогизма нужно переме­стить, т. е. большую посылку нужно сделать меньшей в новом силлогизме, а меньшую большей (нужно произвести metathesis, или mutatio praemissarum).

В, С, D, F, начальные согласные названий, показывают модусы фигуры 1, получающиеся от сведения. Так Cesare, Camestres и Camenes фигур 2 и 4 можно свести к Celarent фигуры 1; Darapti, Disamis фигуры 3 можно свести к Darii, Fresison — к Ferio.

Буква k показывает, что данный модус может быть доказан через посредство какого-либо модуса фигуры 1 при помощи осо­бого приёма, который называется reductio per deductionem ad impossibile, или, короче, reductio ad impossibile. Этот приём сведения называется также reductio ad absurdum.

Рассмотрим несколько примеров сведений.

Модус Cesare фигуры 2, как показывает начальная буква, сво­дится к модусу Celarent фигуры 1. Буква s в обозначении этой фигуры показывает, что в суждении Е должно произвести простое обращение. Сведение Cesare к Celarent можно сделать ясным при помощи сопоставления схем этих модусов.

Cesare сводится к Celarent

E ни одно P не есть M E ни одно M не есть P

A все S суть M A все S суть M

E ни одно S не есть P E ни одно S не есть P

Из сопоставления схем видно, что произошло только чистое обращение в большей посылке.

Модус Darapti сводится к Daril фигуры 1 и именно следую­щим образом. Меньшую посылку нужно обратить посредством ограничения, т. е. из суждения «все М суть должно полу­читься суждение; «некоторые S суть M.

Darapti сводится к Darii

A Все M суть P A все M суть P

A Все M суть P I некоторые S суть M

I Некоторые S суть P I некоторые S суть P

 

Пример:

Darapti

A Все киты суть млекопитающие

A Все киты суть водные животные

I Некоторые водные животные суть млекопитающие

 

Darii

A Все киты суть млекопитающие

A Некоторые водные животные суть киты

I Некоторые водные животные суть млекопитающие

 

Bramantip сводится к Barbara путем перестановки посылок:

 

Bramantip: Barbara:

 

Все P суть M все M суть S

Все M суть S все P суть M

Некоторые S суть P все P суть S

 

После того, как сделано заключение, в нем необходимо сделать обращение, на что указывает буква p; тогда получится: некоторые S суть P.

 

Пример:

A Все металлы суть материальные вещества

A Все материальные вещества суть тяжелые тела

I Некоторые тяжелые тела есть суть металлы

 

A Все материальные вещества суть тяжелые тела

A Все металлы суть материальные вещества

I Некоторые тяжелые тела суть металлы.

 

Рассмотрим еще сведение Camestres к Calerent. Для осуществления такого сведения необходимо произвести перестановку посылок, обратив меньшую посылку чисто, а равным образом сделав чистое обращение в заключение.

Camestres:

A все P суть M

E ни одно S не есть M

E ни одно S не есть P

 

Calerent:

Ни одно M не есть S

Все P суть M

Ни одно P не есть S

Ни одно S не есть P

 

Возьмем пример:

 

A Все звезды суть самосветящиеся тела

A Ни одна планета не есть самосветящееся тело

E Ни одна планета не есть звезда

 

E Ни одно самосветящееся тело не есть планета

A Все звезды суть самосветящиеся тела

E Ни одна планета не есть звезда

(после чистого обращения)

 

Reductio ad absurdum. Наконец, рассмотрим ещё один спо­соб сведения, это именно сведение посредством reductio ad absurdum — приведение к нелепости; он применяется, как уже было сказано, во всех тех модусах, в которых есть буква k.

К таким модусам относятся Baroko и Bokardo. Буква В в на­чале обозначения показывает, что для сведения необходимо вос­пользоваться модусом Barbara. Этот способ называется reductio ad absurdum (сведение к нелепости) по следующей причине. Мы, имея две посылки, приходим к известному выводу. Кто-нибудь утверждает, что наш вывод неверен. Тогда наша задача заклю­чается в том, чтобы показать нелепость этого утверждения. Для этого мы стараемся показать, что нельзя, признавая данные посылки, не признавать: нашего заключения, или вывода.

Возьмём умозаключение по модусу Baroko.

А Все Р суть М,

О Некоторые S не суть М.

О Следовательно, некоторые S не сутьР.

Будем отрицать справедливость заключения: «Некоторые S не суть Р». Если мы не признаём истинным заключение, то мы должны признать истинность противоречащего ему су­ждения. Поэтому, если ложно, что «некоторые S не суть Р», то должно быть истинным, что «все S суть Р». Сделав принятое положение меньшей посылкой, как это показывает буква k, мы получаем следующий силлогизм по Barbara с Р. в качестве сред­него термина:

Все Р суть М.

Все S суть Р.

Все S суть М.

Именно k показывает, что посылка, обозначение которой предше­ствует букве А, должна быть замещена положением, противоречащим заключению.

 

Глава XVI







Дата добавления: 2014-11-12; просмотров: 426. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия