Студопедия — Характеристики двигателей постоянного тока. Обычно рассматривают три основные характеристики двигателей постоянного тока:
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Характеристики двигателей постоянного тока. Обычно рассматривают три основные характеристики двигателей постоянного тока:






Обычно рассматривают три основные характеристики двигателей постоянного тока:

- скоростную характеристику,

- характеристику момента,

- механическую характеристику.

Все характеристики, отражающие взаимосвязь между током якоря, механическим моментом на валу двигателя и частотой вращения якоря зависят от способа возбуждения двигателя, поэтому они рассматриваются отдельно для каждой схемы возбуждения двигателя.

3.4.1. Характеристики двигателей с независимым
и параллельным возбуждением

Характеристика скорости

Скоростной характеристикой называют зависимость частоты вращения якоря от тока якоря двигателя при постоянном напряжении питания U = const, равном номинальному напря­же­нию, и постоянном токе возбуждения I в = const.

Для получения функциональной зависимости скорости вращения якоря от тока воспользуемся уравнением электрического равновесия двигателя

.

Из этого уравнения получаем выражение для частоты вращения

.

В полученной формуле от тока якоря зависят две составляющие: произведение R я I яи результирующий магнитный поток машины .

  Рис. 3.4

Произведение R я I я, равное падению напряжения на сопротивлении цепи якоря, приводит к пропорциональному уменьшению частоты вращения при увеличении тока якоря. Магнитный поток машины при увеличении тока якоря из-за реакции якоря несколько уменьшается. Эта зависимость магнитного потока от тока якоря нелинейная, поэтому и скоростная характеристика двигателей с независимым и параллельным возбуждением нелинейная (рис. 3.4).

В зависимости от соотношения влияния на частоту вращения падения напряжения R я I я и изменения магнитного потока двигателя характеристика скорости может иметь различный вид. На рис. 3.4 кривая 1 представляет собой характеристику скорости двигателя, у которого влияние R я I я преобладает перед влиянием потока , кривая 3 представляет собой скоростную характеристику двигателя, у которого влияние потока преобладает перед влиянием падения напряжения на сопротивлении цепи якоря R я I я .

Чаще всего встречаются двигатели, у которых уменьшение частоты вращения за счет падения напряжения на сопротивлении цепи якоря преобладает перед влиянием реакции якоря, приводящей к уменьшению магнитного потока.

Характеристика момента

Характеристикой момента называют зависимость механического момента на валу двигателя от тока якоря при постоянном номинальном напряжении питания U = U н = const и при постоянном номинальном токе возбуждения I в = I вн = const.

Ток якоря ненагруженного двигателя не равен нулю. Это объясняется наличием потерь в двигателе, работающем без нагрузки. Такой ток называется током холостого хода I яодвигателя.

Используя ранее полученную формулу для определения механического момента на валу двигателя, получаем для двигателя, работающего в режиме холостого хода, формулу: .

Нагруженный двигатель при токе якоря I я развиваетмеханический момент . Этот развиваемый момент называют электромагнитным.

Механический момент на выходе двигателя равен разности электромагнитного момента и момента холостого хода .

Рис. 3.5

При неизменной величине магнитного потока зависимости и являются прямыми линиями. Однако магнитный поток машины несколько уменьшается при увеличении тока якоря I я из-за реакции якоря, поэтому характеристики и не являются прямолинейными (рис. 3.5). Максимальное значение тока якоря, при котором якорь ненагруженного двигателя (М 2 = 0) начинает вращаться, называют током трогания. Электромагнитный момент в этом случае равен моменту холостого хода.

Особый интерес представляет график зависимости КПД машины от тока якоря (см. рис. 3.5). КПД равен нулю при токах, меньших тока холостого хода или тока трогания (М 2 = 0 и Р 2 = 0). При дальнейшем увеличении тока КПД увеличивается и достигает максимального значения при токе якоря, равном примерно 0, 75 I ян. При больших токах КПД начинает уменьшаться. КПД двигате-
лей средней и большой мощности при номинальном токе достига-ет 85 – 95 %.

Механическая характеристика

Основной характеристикой двигателя постоянного тока является механическая характеристика.

Механической характеристикой называют зависимость частоты вращения якоря n от механического момента на валу двигате-
ля M 2 при постоянном напряжении питания и постоянном токе возбуждения, т. е. . В дальнейших рассуждениях будем предполагать, что электромагнитный момент равен механическому моменту на выходе двигателя .

Особую роль играет механическая характеристика двигателя при номинальном напряжении питающей сети U = U н = const и номинальном токе возбуждения I в = I вн = const. Такую механическую характеристику называют естественной. Рассматривают и другие механические характеристики, выражающие ту же зависимость , но при других условиях работы, т. е. при других значениях напряжения, при других токах возбуждения и при различных сопротивлениях реостатов, включенных последовательно с якорем. Такие механические характеристики называют искусственными.

Найдем аналитическое уравнение, описывающее механическую характеристику.

В уравнении электрического равновесия . ПротивоЭДС обмотки якоря . Следовательно,
=
. Из полученного уравнения . Но из уравнения для определения момента и .
Тогда .

Обозначим и . Можно написать .

Полученное уравнение является уравнением прямой линии.

Уравнение состоит из двух слагаемых. Первое слагаемое не зависит от момента, а второе слагаемое прямо пропорционально механическому моменту М.

Очевидно то, что механическая характеристика (рис. 3.6) двигателя постоянного тока выражается прямой линией. Такую прямую можно провести через две точки, положение которых на графике можно найти следующим образом: в режиме идеального холостого хода момент двигателя равен нулю , и якорь вращается с частотой , а при номинальном напряжении .

 

Рис. 3.6

 

Это первая точка механической характеристики. Положение другой точки определяется из условий пуска двигателя. При подключении двигателя в сеть в начальный момент времени из-за инерционности якоря частота вращения равна нулю n= 0. Противо-ЭДС обмотки якоря тоже равна нулю, и тогда приложенное напряжение падает только на сопротивлении якорной цепи. Ток якоря в этом случае достигает больших величин из-за малости R я. Его называют пусковым током I яп. Сила пускового тока определяется из уравнения .

Рис. 3.7

Механический момент, развиваемый двигателем, в этом случае называют пусковым моментом М п , и его величина определяется формулой

.

Общий вид естественной механической характеристики показан на рис. 3.7.

Двигатели с параллельным возбуждением имеют пусковой момент в 10…20 раз больше номинального, поэтому рабочая часть механической характеристики, ограниченная режимом холостого хода (М = 0) и номинальным значением момента на валу , занимает лишь начальную часть полной характеристики (см. рис. 3.6), в пределах которой частота вращения изменяется незначительно. Такая механическая характеристика, когда при изменении механического момента от нулевого значения до номинального значения частота вращения изменяется незначительно, называется жесткой (см. рис. 3.7). Величина весьма невелика.







Дата добавления: 2014-11-12; просмотров: 13658. Нарушение авторских прав; Мы поможем в написании вашей работы!



Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия