Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Векторные диаграммы напряжений трехфазного синхронного генератора





Векторная диаграмма напряжений имеет большое значение для анализа работы синхронной машины. Она позволяет определять изменение напряжения синхронного генератора. С помощью диаграммы напряжений можно определить условия работы машины в различных режимах без соответствующих испытаний. Она позволяет получить расчетным путем основные характеристики машины. Векторная диаграмма позволяет определить угол фазового сдвига ЭДС, наводимой полем возбуждения, и напряжения на ее зажимах.

При построении векторных диаграмм используют следующие положения теории электрических цепей:

а) падение напряжения на активном сопротивлении фазной обмотки изображают вектором, длина которого пропорциональна току обмотки, а начальная фаза совпадает с начальной фазой тока;

Рис. 7.13

б) магнитный поток рассеяния, пропорциональный току статорной обмотки, наводит в обмотке ЭДС, величина которой пропорциональна току этой обмотки. Вектор этой ЭДС отстает от тока на 90 °. На векторных диаграммах эту ЭДС представляют в форме падения напряжения на индуктивном сопротивлении рассеяния . Вектор падения напряжения опережает ток на 90 ° (рис. 7.13) и равен ;

в) магнитный поток реакции якоря, тоже пропорциональный току в машинах с неявно выраженными полюсами, наводит свою ЭДС в фазной обмотке машины. На векторных диаграммах эту ЭДС представляют в форме падения напряжения на реактивном сопротивлении реакции якоря или ;

г) в машинах с явно выраженными полюсами продольная и поперечная составляющие намагничивающих сил создают свои ЭДС в обмотках, и эти ЭДС представляются в форме падений напряжений на продольном и поперечном реактивном сопротивле-нии и .

Для построения векторной диаграммы используются два способа.

В соответствии с первым каждая намагничивающая сила рассматривается отдельно и создает свой собственный магнитный поток, который, в свою очередь, порождает свою электродвижущую силу. Таким образом, получают четыре независимых потока:

а) поток возбуждения Φ создает основную ЭДС ;

б) магнитный поток продольной составляющей реакции якоря создает свою ЭДС;

в) поток поперечной составляющей реакции якоря создает свою ЭДС;

г) магнитный поток рассеяния.

В соответствии с теорией двух реакций Блонделя все потоки, созданные током нагрузки , раскладываются на продольную и поперечную составляющие.

Оценку реакции якоря синхронной машины по продольной и поперечной оси осуществляют по сопротивлениям реакции якоря ( и ), которые являются основными параметрами синхронной машины.

По второму способу прежде всего определяют результирующую намагничивающую силу генератора и после нахождения результирующего потока зазора определяют ЭДС, наводимую в машине. Диаграмма намагничивающих сил, полученных таким образом, называется диаграммой Потье или диаграммой электро- и магнитодвижущих сил.

Необходимо отметить то, что векторные диаграммы синхронного генератора могут быть использованы для анализа её работы в режиме двигателя или синхронного компенсатора.

7.5.1. Диаграмма электродвижущих и намагничивающих сил трехфазных синхронных генераторов
с неявно выраженными полюсами

В настоящем и последующих разделах векторные диаграммы будем строить для одной фазы трехфазной системы напряжений.

Рис. 7.14

Построим диаграмму трехфазного асинхронного генератора для случая активно-индуктивной нагрузки . Направим вектор напряжения на зажимах генератора по положительной оси ординат (рис. 7.14) и проведем вектор тока отстающим от вектора напряжения на угол .

Проведем вектор ЭДС , созданной магнитным потоком возбуждения . Вектор магнитного потока опережает вектор ЭДС на угол 90 °. Сопротивление реакции якоря синхронного генератора с неявно выраженными полюсами по продольной и поперечной оси одинаково и равно .

Реальная ЭДС обмотки статора нагруженного генератора равна разности или .

Выходное напряжение генератора определяется из уравнения

;

,

где – реактивное сопротивление рассеяния;

– активное сопротивление фазной обмотки.

Рис. 7.15

Рис. 7.15 представляет векторную диаграмму напряжений для случая емкостной нагрузки, когда ток опережает напряжениена угол .

Сравнивая диаграммы, мы видим, что при индуктивной нагрузке реакция якоря действует на систему возбуждения размагничивающе. Реальная ЭДС нагруженного генератора меньше ЭДС генератора, работающего в режиме холостого хода.
При емкостной нагрузке генератора (см. рис. 7.15) реакция якоря имеет намагничивающее действие. Реальная ЭДС генератора больше ЭДС холостого хода.

7.5.2. Векторная диаграмма ЭДС трехфазного
синхронного генератора с явно выраженными
полюсами (диаграмма Блонделя)

В машинах с явно выраженными полюсами намагничивающая сила реакции якоря создает поток реакции якоря, который, в свою очередь, наводит в обмотках ЭДС реакции якоря. В соответствии с методом Блонделя намагничивающая сила реакции якоря должна быть представлена в виде суммы двух составляющих. Продольная и поперечная составляющие зависят от геометрической формы полюсов. С помощью коэффициентов поля реакции якоря и находят продольную и поперечную составляющие реакции, отнесенные к обмотке возбуждения

и .

Рис. 7.16

Эти составляющие реакции якоря и порождают магнитные потоки и , которые наводят ЭДС в обмотке статора. Это разложение по составляющим позволяет построить диаграмму напряжений для машины с явно выраженными полюсами таким же методом, как и для машин с неявно выраженными полюсами.

На рис. 7.16 представлена векторная диаграмма напряжений генератора, нагруженного индуктивной нагрузкой. Диаграмма построена следующим образом.

Разложим ток на поперечную составляющую , которая совпадает по направлению с вектором ЭДС , и продольную составляющую , которая отстает от ЭДС на .

Рис. 7.17

Продольный поток и поперечный поток , порожденные соответствующими токами, создают ЭДС и .

Коэффициенты реакции якоря и
не равны между собой. По этой причине вектор реакции якоря опережает ток на угол, который отличается от 90 °, тогда как в машинах с неявно выраженными полюсами падение напряжения реакции якоря сдвинуто по отношению к току точно на 90 °.

На рис. 7.17 представлена диаграмма напряжений при емкостной нагрузке. Строится эта диаграмма аналогично предыдущей.

 

 







Дата добавления: 2014-11-12; просмотров: 3665. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия