Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Оборудование, инструменты и приборы. Варианты заданий приведены в таблицах 4.16 -4.17





ПЭВМ, система MathCad

Варианты заданий

Варианты заданий приведены в таблицах 4.16 -4.17.

Задание 1

Найти частное решение y(x) дифференциального уравнения для своего варианта при произвольных начальных условиях и построить график решения. Варианты заданий приведены в табл.4.16.

 

Таблица 4.16

Варианты заданий

№ вар Задание № вар Задание № вар Задание
  y III -13y II +12y I =0   y III +y=0   4y II +y=x
  y III -3y II +3y I -y=0   y IV +8y II +16y=0   2y III -x y I =cox x+y
  y IV -3y II +y=0   y IV +2y III +y II =0   7y II +3y I -2xy=0
  y IV -2y III +y II =ex   y III -y=x3-1   3y II +y=sin2x
  y III +y II =x2+1+3xex   y IV +y III =cos 4x   y I +3y II =xex
  y II -2y=2xex(cos x –sinx)   y II +y=1/cos x   y III -3y II =y+x2
  y II +y=2x cos x cos 2x   x2 y II +x y I -y=x2   (x+5)y III +3y I =x+1
  (x+1)y II +x(y I)2=y I   (1+y y I)y II =1+(y I)2   y II +3y I =cos x+2
  2y I +ex y II =3-x   (1+y)y II +3=2sin 2x   y III +y II -3y I =y+x ln x
  2y II -3x y I +7y=(x+1)2   y II -(1+y)y I =2+x2   y III +2y II =sin x

Задание 2

Решите систему дифференциальных уравнений для своего варианта на отрезке [0, 3]. Выведите значения искомых функций и их производных в точке с координатой х=1.5. Варианты заданий приведены в табл.4.17.

 

Таблица 4.17

Варианты заданий

№ вар Задание № вар Задание
  x I =y-x2-x x(0)=0 y I =3x-x2-y y(0)=1   x I =sin y-x x(0)=0 y I =x-y2 y(0)=1
  x II =x-3y x(0)=0 x I (0)=3 y II =x+2y y(0)=1 x I (0)=-1   x II =x+3y x(0)=3 x I (0)=5 y II =2y-x y(0)=2 x I (0)=-2
  x I = y-ex x(0)=0 y I = 2ex-y y(0)=1   x I =2y-x x(0)=0 y I =cos x-2y2 y(0)=1
  x II =5x-3y x(0)=-2 x I (0)=5 y II =3x+2y y(0)=2 x I (0)=2   x II =4x-3y x(0)=0 x I (0)=1 y II =x-2y y(0)=2 x I (0)=-1
  x I =2y-x2+x x(0)=1 y I =3x-y y(0)=1   x II =2x-3y x(0)=0 x I (0)=5 y II =x-2y y(0)=2 x I (0)=-1
  x I =2sin y+x2 x(0)=0 y I =3x-y2-y y(0)=1   x I = y-xey x(0)=1 y I = 2ey-y y(0)=1
  x II =x-y x(0)=0 x I (0)=5 y II =x+3y y(0)=2 x I (0)=-1   x II =2x-y x(0)=0 x I (0)=5 y II =2y y(0)=-1 x I (0)=2
  x I =2y-x2 x(0)=0 y I =3x-y2-y y(0)=-1   x II =2x-3y+1 x(0)=0 x I (0)=3 y II =x-2 y(0)=2 x I (0)=1
  x II =1+3y x(0)=0 x I (0)=1 y II =x-2y y(0)=2 x I (0)=-1   x I =y-x x(0)=0 y I =cos x-y2 y(0)=1
  x I =2y-2x2-2x x(0)=-1 y I =3x2-y y(0)=0   x I =y-3x x(0)=0 y I =3x-x2-y y(0)=1
  x II =2-y x(0)=0 x I (0)=5 y II =x y(0)=2 x I (0)=-1   x I = 2y-ex x(0)=0 y I = ex-y y(0)=1
  x I =sin y-x x(0)=0 y I =cos x-y2 y(0)=1   x I =sin x-2y x(0)=0 y I =3x-y2 y(0)=1
  x I =3y-x2 x(0)=0 y I =2x-y2 y(0)=1   x I =y-x2 x(0)=0 y I =3x-y2-y y(0)=-1
  x I =y-2x2-2 x(0)=0 y I =x-y2 y(0)=-1   x I =sin x-x x(0)=0 y I =x-y2 y(0)=1
  x I =y-x2 x(0)=2 y I =x-3y2 y(0)=1   x II =x-3y x(0)=0 x I (0)=1 y II =x-2y y(0)=2 x I (0)=-1

 

 

Задание 3

 

Решить задачу, рассмотренную в пункте 8 с учетом данных своего варианта. Для вариантов 1 – 5: tk=45с, для вариантов 6 – 10: tk=40с, для вариантов 11 – 15: tk=50с, для вариантов 16 – 20: tk=55с, для вариантов 21 – 25: tk=35с, для вариантов 26 – 30: tk=30с.

 

Порядок выполнения работы.

1. Создать MathCad – документ и сохранить его под именем «Решение_дифф_уравнений_систем».

2. Выполнить задания в соответствии с данными своего варианта.

Содержание отчета.

В отчете по лабораторной работе должно быть дано описание методов решения дифференциальных уравнений и систем.

В отчет должен быть помещен сформированный на лабораторной работе MathCAD-документ “ Решение_ дифф_уравнений_систем ”.

 

Контрольные вопросы.

1. При помощи каких функций решаются нелинейные дифференциальные уравнения?

2. При помощи каких функций решаются системы дифференциальных уравнений?

3. Решить дифференциальное уравнение по заданию преподавателя.

4. Решить систему дифференциальных уравнений по заданию преподавателя.

 

Лабораторная работа № 25

 







Дата добавления: 2014-11-12; просмотров: 614. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия