Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Оборудование, инструменты и приборы. Варианты заданий приведены в таблицах 4.16 -4.17





ПЭВМ, система MathCad

Варианты заданий

Варианты заданий приведены в таблицах 4.16 -4.17.

Задание 1

Найти частное решение y(x) дифференциального уравнения для своего варианта при произвольных начальных условиях и построить график решения. Варианты заданий приведены в табл.4.16.

 

Таблица 4.16

Варианты заданий

№ вар Задание № вар Задание № вар Задание
  y III -13y II +12y I =0   y III +y=0   4y II +y=x
  y III -3y II +3y I -y=0   y IV +8y II +16y=0   2y III -x y I =cox x+y
  y IV -3y II +y=0   y IV +2y III +y II =0   7y II +3y I -2xy=0
  y IV -2y III +y II =ex   y III -y=x3-1   3y II +y=sin2x
  y III +y II =x2+1+3xex   y IV +y III =cos 4x   y I +3y II =xex
  y II -2y=2xex(cos x –sinx)   y II +y=1/cos x   y III -3y II =y+x2
  y II +y=2x cos x cos 2x   x2 y II +x y I -y=x2   (x+5)y III +3y I =x+1
  (x+1)y II +x(y I)2=y I   (1+y y I)y II =1+(y I)2   y II +3y I =cos x+2
  2y I +ex y II =3-x   (1+y)y II +3=2sin 2x   y III +y II -3y I =y+x ln x
  2y II -3x y I +7y=(x+1)2   y II -(1+y)y I =2+x2   y III +2y II =sin x

Задание 2

Решите систему дифференциальных уравнений для своего варианта на отрезке [0, 3]. Выведите значения искомых функций и их производных в точке с координатой х=1.5. Варианты заданий приведены в табл.4.17.

 

Таблица 4.17

Варианты заданий

№ вар Задание № вар Задание
  x I =y-x2-x x(0)=0 y I =3x-x2-y y(0)=1   x I =sin y-x x(0)=0 y I =x-y2 y(0)=1
  x II =x-3y x(0)=0 x I (0)=3 y II =x+2y y(0)=1 x I (0)=-1   x II =x+3y x(0)=3 x I (0)=5 y II =2y-x y(0)=2 x I (0)=-2
  x I = y-ex x(0)=0 y I = 2ex-y y(0)=1   x I =2y-x x(0)=0 y I =cos x-2y2 y(0)=1
  x II =5x-3y x(0)=-2 x I (0)=5 y II =3x+2y y(0)=2 x I (0)=2   x II =4x-3y x(0)=0 x I (0)=1 y II =x-2y y(0)=2 x I (0)=-1
  x I =2y-x2+x x(0)=1 y I =3x-y y(0)=1   x II =2x-3y x(0)=0 x I (0)=5 y II =x-2y y(0)=2 x I (0)=-1
  x I =2sin y+x2 x(0)=0 y I =3x-y2-y y(0)=1   x I = y-xey x(0)=1 y I = 2ey-y y(0)=1
  x II =x-y x(0)=0 x I (0)=5 y II =x+3y y(0)=2 x I (0)=-1   x II =2x-y x(0)=0 x I (0)=5 y II =2y y(0)=-1 x I (0)=2
  x I =2y-x2 x(0)=0 y I =3x-y2-y y(0)=-1   x II =2x-3y+1 x(0)=0 x I (0)=3 y II =x-2 y(0)=2 x I (0)=1
  x II =1+3y x(0)=0 x I (0)=1 y II =x-2y y(0)=2 x I (0)=-1   x I =y-x x(0)=0 y I =cos x-y2 y(0)=1
  x I =2y-2x2-2x x(0)=-1 y I =3x2-y y(0)=0   x I =y-3x x(0)=0 y I =3x-x2-y y(0)=1
  x II =2-y x(0)=0 x I (0)=5 y II =x y(0)=2 x I (0)=-1   x I = 2y-ex x(0)=0 y I = ex-y y(0)=1
  x I =sin y-x x(0)=0 y I =cos x-y2 y(0)=1   x I =sin x-2y x(0)=0 y I =3x-y2 y(0)=1
  x I =3y-x2 x(0)=0 y I =2x-y2 y(0)=1   x I =y-x2 x(0)=0 y I =3x-y2-y y(0)=-1
  x I =y-2x2-2 x(0)=0 y I =x-y2 y(0)=-1   x I =sin x-x x(0)=0 y I =x-y2 y(0)=1
  x I =y-x2 x(0)=2 y I =x-3y2 y(0)=1   x II =x-3y x(0)=0 x I (0)=1 y II =x-2y y(0)=2 x I (0)=-1

 

 

Задание 3

 

Решить задачу, рассмотренную в пункте 8 с учетом данных своего варианта. Для вариантов 1 – 5: tk=45с, для вариантов 6 – 10: tk=40с, для вариантов 11 – 15: tk=50с, для вариантов 16 – 20: tk=55с, для вариантов 21 – 25: tk=35с, для вариантов 26 – 30: tk=30с.

 

Порядок выполнения работы.

1. Создать MathCad – документ и сохранить его под именем «Решение_дифф_уравнений_систем».

2. Выполнить задания в соответствии с данными своего варианта.

Содержание отчета.

В отчете по лабораторной работе должно быть дано описание методов решения дифференциальных уравнений и систем.

В отчет должен быть помещен сформированный на лабораторной работе MathCAD-документ “ Решение_ дифф_уравнений_систем ”.

 

Контрольные вопросы.

1. При помощи каких функций решаются нелинейные дифференциальные уравнения?

2. При помощи каких функций решаются системы дифференциальных уравнений?

3. Решить дифференциальное уравнение по заданию преподавателя.

4. Решить систему дифференциальных уравнений по заданию преподавателя.

 

Лабораторная работа № 25

 







Дата добавления: 2014-11-12; просмотров: 614. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия