Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение дифференциальных уравнений и систем





Нелинейные дифференциальные уравнения и системы с такими уравнениями, как правило, не имеют аналитических методов решения, и здесь особенно важна возможность из решения численными методами. В большинстве случаев желательно представление решений в графическом виде, что также позволяет MathCad. Для решения задач такого класса можно использовать ряд функций:

Odesolve(x, b, [step]) - возвращает функцию, которая является решением дифференциального уравнения. Используется в блоке с оператором Given.

x - переменная интегрирования, действительное число

b - конечная точка отрезка интегрирования

step - величина шага по переменной интегрирования (необязательный аргумент)

Rkadapt(y, x1, x2, n, F) - возвращает матрицу решений методом Рунге-Кутта с переменным шагом для системы обыкновенных дифференциальных уравнений с начальными условиями в векторе y, правые части которых записаны в символьном векторе F, на интервале от x1 до x2 при фиксированном числе шагов n;

rkfixed(y, x1, x2, n, F) - возвращает матрицу решений методом Рунге-Кутта системы обыкновенных дифференциальных уравнений с начальными условиями в векторе y, правые части которых записаны в символьном векторе F, на интервале от x1 до x2 при фиксированном числе шагов n.

Для численного решения одиночного дифференциального уравнения в MathCAD имеется функция Odesolve, с помощью которой может быть решена как задача Коши для обыкновенного дифференциального уравнения, так и граничная задача. Эта функция входит в состав блока решения и является его заключительным ключевым словом. Пример использования функции приведен на рис.68.

 

 

 
 

Рис.68. Пример решения дифференциального уравнения второго порядка с помощью функции Odesolve.

 

Системы линейных дифференциальных уравнений первого порядка решаются с помощью функции Rkfixed.

На рис.2 приведен пример применения функции rkfixed для решения дифференциального уравнения, описывающего процесс свободных затухающих колебаний вели­чины электрического заряда q (К) на конденса­торе с емкостью С (Ф), включенного в замкнутый контур, содержащий также сопротивление R (Ом) и индуктивность L (Гн).

Этот процесс описывается дифферен­циальным уравнением второго порядка

где =d2q/dt2 – ускорение изменения заряда, К/с2;

=dq/dt – скорость изменения заряда, К/с;

b – коэффициент затухания, 1/с, ;

wc– круговая частота собственных колебаний контура, 1/с,

Исходные данные к решению задачи:

Начальное условие: t=0, Vq=0, q=q0.

Номер варианта R, Ом L, Гн C, Ф q0, K
      0, 0050 0, 0035 0, 0040 0, 0075 0, 0070  

Процесс затухания колебаний рассчитать до tk

Исходное дифференциальное уравнение второго порядка может быть преобразовано в систему дифференциальных уравнений первого порядка.

Для этого введем подстановки:

q0=q

q1=

Дифференциальное уравнение второго порядка преобразуем в систему дифференциальных уравнений первого порядка:

Правые части системы дифференциальных уравнений записываются в вектор правых частей системы уравнений D(t, q).

Матрица Z размерности n строк по числу точек вывода результатов решения и m+1 столбцов, равным числу уравнений в системе. В столбцах матрицы содержатся значения переменных соответственно t, , . На рис.2 представлен график изменения заряда от времени.

 

 

 

Рис.69. Пример решения дифференциального уравнения второго порядка с помощью функции rkfixed.







Дата добавления: 2014-11-12; просмотров: 1637. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия